Quick Manual

Digital Panel Meter, Model 451F
 AC Voltage \& AC Current Measuring

1. Preface

Thank you for purchasing our digital panel meter 451F series.
Before use, read this manual carefully and thoroughly, and keep this manual available for routine reference.
Please check contents of the package you received as outlined below.
(1) 451 F itself
(2) Packing
(3) This manual
(4) Unit label
(5) Connector with 2 m flat cable (BCD output option)

For safe use of this product, please observe the following warning and caution.
In order to help the users' safe use of the products, the following symbol marks are used in this manual.
© WARNING
\triangle CAUTION

This is the warning to avoid the danger when it is assumed that such danger as may cause fatal accident or severe injure to a user occurs in case that the product is mishandled.

This is the caution to avoid the danger when it is assumed that such danger as may cause minor injure to a user or generate only physical obstacle occurs in case that the product is mishandled.

\triangle CAUTION
Preserve followings for your safety.
\bullet The rated data is, however, defines with more than 15 minutes warming-up times.
• When the product is installed in the cabinet, perform the appropriate heat radiation to keep
less than $50{ }^{\circ} \mathrm{C}$ in it.
• Avoid the close-contacted mounting of the meter. The rise of internal temperature affects
the life of product.
- Do not install under the following conditions.
•Where it is exposed to direct sunlight, dust, corrosive gases, rain, etc.
•Where ambient temperature or humidity is high.
•Where it is exposed to excessive noise or static electricity.
•Where there is constant vibration or shock.
- Store the instrument within the specified temperature range for storage $\left(-20 \sim 70^{\circ} \mathrm{C}\right)$.
• When the front panel or the case becomes dirty, wipe it with soft cloth.
For heavy dirt, wipe it lightly with the soft cloth wetted with the neutral cleaner thinned
by water, and finish the cleaning with dry cloth. Do not use organic solvent like
benzene or paint thinner as they may deform or discolor the case.

2. Specifications

2.1 Installation Specifications

Power Supply
Power Consumption
Operating Temperature
Storage Temperature
Weight
Mounting Method : Panel mount with the bracket.

2.2 General Specifications

Display : 0~9999, "-" polarity, with zero-suppress function.
Red or green LED (character height 15.2 mm)
Decimal Point : Programmable (No external control)
Over-range indication : Blinking with 130% display. When exceeded 9999 , blinking with 0000 .
In case of 699.9 V measuring, when exceeded 699.9 V , blinking with full scale value.
Resolution
1/10000
Sampling rate : Approx. 2 times / sec.
Noise Through $: 1000 \mathrm{~V}$ (at AC voltage power supply)
Power Supply Line
Insulation Resistance
Withstanding Voltage

Housing protection

DC500V $100 \mathrm{M} \Omega$ or more.
Input terminals - Case : AC2000V each for 1 min .
Power supply terminals - Case : AC2000V each for 1 min .
Power supply terminals - Input and output terminals : AC1500V each for 1 min . Input terminals - Output terminals : AC500V each for 1 min .
: IP65 for the front panel, IP20 for the rear case, IP00 for terminals

3. Mounting

Insert the case with the suitable gasket from the panel front.
Fix the case using the mounting bracket.
Cut the panel to mount the case in accordance with the illustration.

Recommended panel thickness is 0.6 to 6 mm .
For light panel, such as aluminum, should be 1.5 mm or more to avoid deform.
Fasten torque of the mounting bracket is 0.2 to $0.3 \mathrm{~N} \cdot \mathrm{~m}$.

CAUTION
- Do not overtighten the mounting bracket.
- When plural mounting, pay attention to ventilation to cool down in the panel.

4. Nomenclature

4.1 Front panel

4.2 Function key

MODE \cdots. Switch the measuring, the parameter setting, and the calibration mode. $\cdots \cdots$ Switch modes during the parameter setting mode.

$\cdots \cdot$ Switch indications during the measuring mode. $\cdots \cdots$ Enter the input value during the parameter setting mode.

| M_{y} | $\cdots \cdots$ |
| :---: | :--- | Switch to My mode during the measuring mode.

4.3 Rear panel

5. Connections

5.1 Terminals and Connections

\triangle WARNING
\bullet To avoid an electrical shock, turn the power off when wiring.
\bullet Do not wire with moistened hands. Locate away from the wet place.
\bullet Do not touch terminals when turning the power on.

\triangle CAUTION

- Power supply and load should be within the suitable range.
- Power supply should be rapidly reach the rated power within few seconds.
- When the power is turned OFF and ON again soon after, provide the downtime of 10 seconds or more.
- Do not miswiring.
- Note for wiring
(1) Lay the input cable and the power cable separately. Otherwise indication may be fluctuated.
(2) COM, HOLD, ZS and MR terminals are not insulated. Terminals shall be wired to photo coupler, relay, switch, and so on. Each meter shall be insulated when plural mounting.

-Terminals

Terminals are not insulated from the input.
Active "L" $\quad \mathrm{I}_{\text {IL }} \leqq-1 \mathrm{~mA}, ~ " \mathrm{~L} "=0 \sim 1.5 \mathrm{~V}, ~ " \mathrm{H} "=3.5 \sim 5 \mathrm{~V}$

- Hold : Hold display, data output, current value, peak memory, bottom memory, and display amplitude. Hold the data when the hold input is active.
- ZS : Offset the electrical input value at ZERO. The ZS LED is lit when the Zero set function is effective.
- MR : Rest peak memory, bottom memory, and jump width.

You can reset the memory by turning off or pushing function key. Minimum pulse width: 10 ms

-Terminals

※Refer to terminal number on page 11.
Please select the input range refer to function explanation parameter 04 on page 7 .

Terminal screws : M3
Fastening torque : $0.46 \sim 0.62 \mathrm{~N} \cdot \mathrm{~m}$
Crimped terminal : Refer to the figure
at the above.

\triangle CAUTION
Make a connection between only one terminal among the terminal No. 1 to 3, and the terminal
No.4, depending upon the type and range of measuring input.
More than one terminal of the terminal No. to 3 must not be used at a time.
Improper connection of the terminal may cause damage, breakdown, malfunction or other
trouble of this product.

- Analog output connector

- RS-232C output connector

 XG4M-3430-T:OMRON Corp.
- Decimal point external control connector

- RS-485 output connector

Suitable connector with 2 m cable
OUTPUT ENABLE
PEAK MEMORY

Recommended wire \quad Solid wire : AWG28 to 22
Twisted wire : AWG28 to 22
O.D. 0.125 min .

Strip-off length: 9 to 10 mm

5.2 Attaching and detaching of terminal block cover

- Assemble procedures
(1) Direct the claws of the cover to the terminal blocks. "a"
(2) Insert the claw on either side of the cover as the figure shows. "b" Insert the claw on another side until it clicks.
Thus, the attaching is completed.

- Disassemble procedures
(1) Pressing the surface on one side of the cover, slightly slide it downwards. "c"
(2) Insert a small screwdriver into the gap made between the side wall of the terminal blocks and the claw of the cover, and stretch it outward. "d"
(3) Move whole the cover downwards, then the claw on another side is departed from the terminal blocks. "e"

6．Function

6．1 Parameter list
－Display function

No．	Function	Display	Contents	Default
01	Scaling offset	口FFS．	0 to 9999	0000
02	Scaling full scale	FLiL．	0 to 9999	9999 Note
	Decimal point	dP．	0，0．0，0．00， 0.000	0
04	Input range Changeable－36	［H．	CH2 to CH3 Others are indicated by Errl message	CH3
05	Display cycle	－RIE．	$500 \mathrm{~ms}, 1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$	$500 \mathrm{~ms} \mathrm{(SP1)}$
06	Average calculation	R．RıE．	OFF，ON，2，4，8，16，and 32 times	OFF
07	Offset fixing	Q． L －	ON，OFF	OFF
08	Zero fixing of 10^{0} digit	三．LoLr．	ON，OFF	OFF
09	Cut－off	ELI＇．	00.1 to 19．9\％	00.1
10	Zero set	三5Er．	ON，OFF	OFF
11	Display color	EaLor．	G，R	G （Green）
14	Display shutoff timer （Setting of light out time）	FLirs．	ON，OFF， 0 to 99 min ．	$\begin{aligned} & 0,01 \\ & (0: \text { OFF }) \\ & \hline \end{aligned}$

Note ： 6999 at rated input－26A．
－BCD output

No．	Function	Display	Contents	Default
70	BCD output sampling	bLd．5P．	SAMP，DISP （sampling cycle or display cycle）	DISP （Display cycle）

－Analog output

No．	Function	Display	Contents	Default
75	Output switching	R．5EL．	RM，PM，BM，PB	RM（current value）
76	Min．value	RTin	－09： 0 to 9.9 V	－09： 01.0 V
			－29： 0 to 19.9 mA	－29：04．0 mA
77	Max．value	RMRAE	－09：0．1 to 10.0 V	－09： 05.0 V
			－29： 0.1 to 20.0 mA	－29： 20.0 mA
78	Offset	RoFF5．	0 to 9999	0000
79	Full scale	RFLLL．	0 to 9999	9999

NOTE：After changing parameter 76 and／or 77，analog output data at the calibration mode resets to default value．
－RS－232C／RS－485

No．	Function	Display	Contents	Default
80	Baud rate	bRLd．	4800，9600，19200， 38400 bps	9600 bps
81	Data length	LEnEI．	8 bit， 7 bit	8 bit
82	Parity	PRrir．	None，Odd，Even	None
83	Stop bit	$55^{\circ} \mathrm{P}$ ．	2 bit， 1 bit	1 bit
84	BCC switching	bEL．	ON，OFF	OFF
85	Unit number	－5．na．	0 to 99	00

－My setting mode

No．	Function	Display	Contents	Default
99	Code registration	ПЦ．	00 to 98 （00 for non－registration）	-

－My setting mode

Registration No．	Code No．	Function
1	01	Offset
2	02	Full scale
3	03	Decimal point
4	00	NC
5	00	NC
6	00	NC
7	00	NC
8	00	NC

个

6.2 Explanation of function

- Display function

Parameter 01
Parameter 02
Parameter 03
Parameter 04

Parameter 05
Parameter 06

Parameter 07
Parameter 08
Parameter 09
Parameter 10
Parameter 11
Parameter 14
: Select the scaled offset display.
: Select the scaled full scale display.
: Select the decimal point position.
: Select the input range (for -36 only)

Setting	Input	Terminals
	-36	
CH2 (IN2)	999.9 mA	$2-4$
CH3 (IN3)	5.000 A	$3-4$

Select the display rate.
SP1:500ms, SP2:1s, SP3:2s, SP4:4s, SP5:5s (Becomes 500 ms at the moving average.)
Select the numbers of average calculation.
OFF: No average calculation
ON: Sectional average
$2,4,8,16,32$: Numbers of data of moving average
Fix the display equivalent to 0% input.
Display can be fixed to the offset value when the input value is lower than the offset value.
Fix the display of 10° digit to 0 .
: Cut an unstable zone around 0%.
The cut area becomes offset value.
: Offset the initial input value to 0%.
: Select the display color.
: Select the shut-off time of the display after the switch operation.

- BCD output

Parameter 70
: Select the BCD data, whether display cycle or sampling rate. Disable P-06 and -08 at the sampling rate.

- Analog output

Parameter 75
: Switch the analog output.
Parameter 76
Parameter 77
: Set the output value at the 0% input.
: Set the output value at the 100% input.
Parameter 78
: Set the display value at the 0% input.
Parameter 79
: Set the display value at the 100% input.

- RS-232C / RS-485

Parameter 80
Parameter 81
: Select the Baud rate
Parameter 82
: Select the Data length.
Parameter 83
Parameter 84
Parameter 85
Select the Parity.
: Select the Stop bit.
: Disable / Enable the BCC.
Select the Unit number.

- My setting mode

Parameter 99
: Register well-used 8 code numbers in the setting mode.

7. Parameter Setting

7.1 Display switching

During the measuring mode, the display switches from current value to peak memory, bottom memory, display amplitude, and current value, by pushing $P \cdot B$ key.

※During If keep the $\mathrm{P} \cdot \mathrm{B}$ key pushing more than 3 seconds, memory will be reset after switching the display.

7.2 Parameter setting mode

During the measuring mode, the display shows "CodiO" and switches to the parameter setting mode, by pushing the MODE key.

7.3 My setting mode

For your convenience, register well-used 8 code numbers in the setting mode.
During the measuring mode, the display switches the My setting mode by pushing My key.
The setting can be simplified by registering only the necessary function.

- How to register codes

- How to change setting value

7.4 Calibration mode

This mode is ideal for fine calibration of the display and the optional analog output.
During the measuring mode, the display shows "Rd ב́" and switches the Calibration mode by pushing MODE key.

7.5 Reset to Default value

7.6 Error message

Display	Cause of trouble	Countermeasure
Err i	Entered Code No. is not applicable.	Enter correct Code No.
Err こ	Entered value is out of range.	Enter correct value

※ During the parameter setting mode and the My setting mode, return automatically to the measuring mode if you do not touch the switch more than 5 minutes. Changed value does not memorize in this case.

7.7 Numeric and Character Indications

0123456789 -

* When calibrating input Zero, input 0.5% of the rated input value.

Do not apply 0% to avoid excess error.
For example, your product is code-25 (99.99 Vrms) to scale 0 to 9999 display range, input 0.5 Vrms to adjust 005.0.

8. External Dimensions

9．Model Numbering

451F－（1）－（2）－（3）－（4）
【1】Measuring Input

Model		Measuring Range	Input Resistance	Error＊ 1	Thermal Coefficient＊2	Input Overload	Terminals
$\begin{aligned} & 0 \\ & \stackrel{00}{5} \\ & 0 \\ & 0 \\ & 3 \\ & U \end{aligned}$	－22A	99.99 mVrms	$100 \mathrm{k} \Omega$	$\pm(0.2 \%$ of rdg +10 digits $)$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 10V	1－4
	－23A	999.9 mVrms	$100 \mathrm{k} \Omega$	\pm（0．2\％of rdg +10 digits）	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 100 V	1－4
	－24A	9.999 Vrms	$1 \mathrm{M} \Omega$	\pm（ 0.2% of rdg +10 digits）	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 400 V	1－4
	－25A	99.99 Vrms	$1.9 \mathrm{M} \Omega$	$\pm(0.2 \%$ of rdg +10 digits $)$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 400 V	2－4
	－26A	699.9 Vrms	$1.9 \mathrm{M} \Omega$	\pm（0．3\％of rdg +10 digits）	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 700V	3－4
	－20A	Others（from AC 100 mV to AC 700 V ）but one range					Depends on rated
$\begin{aligned} & \text { ED } \\ & \text { D } \\ & U \\ & U \\ & U \end{aligned}$	－32	$99.99 \mu \mathrm{Arms}$	$1 \mathrm{k} \Omega$	$\pm(0.3 \%$ of rdg +10 digits $)$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 20 mA	1－4
	－33	$999.9 \mu \mathrm{Arms}$	100Ω	$\pm(0.3 \%$ of rdg +10 digits $)$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 50 mA	1－4
	－34	9.999 mArms	10Ω	\pm（0．3\％of rdg +10 digits）	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC150mA	1－4
	－35	99.99 mArms	1Ω	$\pm(0.3 \%$ of rdg +10 digits $)$	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC500mA	1－4
	－36	999.9 mArms	0.1Ω	$\pm(0.5 \%$ of rdg +10 digits）	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 2A	2－4
	＊3	5．000 Arms	0.01Ω	$\pm(0.5 \%$ of rdg +10 digits）	$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	AC 10A	3－4
	－30	Others（from $100 \mu \mathrm{~A}$ to 1A）but one range					Depends on rated

${ }^{*} 1$ Error $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 45 \sim 75 \% \mathrm{RH}$
Input sine wave of input frequency $40 \mathrm{~Hz} \sim 1 \mathrm{kHz}$
$\pm 0.2 \%$ of FS ，if max input is less than 10% ．
＊2 Thermal Coefficient $0 \sim 50^{\circ} \mathrm{C}$
Crest factor $=4$（ up to peak 1000 V at 699.9 V ）
＊3 Default Set CH3 for the code－36
Set to 0 ，if rated input is 0.1% or lower．

【2】Power Supply Voltage

Code	Power Source Voltage
A	AC100 to 240 V
B	DC 12 to 24 V
C	DC110V

【3】Data Output 1

Code	Specifications	Impedance	Max．Load
Null	No output		
09	Analog voltage（positive input side outputs） DC 0－10V（Available scaling，Default：1－5V）	Max． 0.1Ω	Min． 100Ω at DC $0-1 \mathrm{~V}$ Min． $1 \mathrm{k} \Omega$ at $\mathrm{DC} 0-10 \mathrm{~V}$ Min． 500Ω at DC $1-5 \mathrm{~V}$
29	Analog current（positive input side outputs） DC $0-20 \mathrm{~mA}$（Available scaling，Default： $4-20 \mathrm{~mA}$ ）	Min． $5 \mathrm{M} \Omega$	Max． $2.4 \mathrm{k} \Omega$ at DC $0-5 \mathrm{~mA}$ Max． 600Ω at DC $0-20 \mathrm{~mA}$ Max． 600Ω at DC 4－20mA
BP	BCD output（TTL level positive logic）		
BN	BCD output（TTL level negative logic）		
DP	BCD output（transistor output，source type）		
DN	BCD output（transistor output，sink type）		
E0	RS－232C		
E1	RS－485		
EC	Decimal point external control		

【4】Data Output 2 （Available－09 and－29 of Data output 1 only）

Code	Specifications
Blank	No output
E0	RS－232C
E1	RS－485
EC	Decimal point external control

Contact Information	
Name $:$ Tsuruga Electric Corporation	
Address ：	$1-3-23$ Minami－Sumiyoshi，Sumiyoshi－ku，Osaka－shi
558－0041 Japan	

Digital Panel Meter，Model 451F／Meter Relay，Model 452F

1．Data Output Code

Code	Specifications
BP	BCD output（TTL level positive logic）
BN	BCD output（TTL level negative logic）
DP	BCD output（transistor output，source type）
DN	BCD output（transistor output，sink type）

2．Connector and Connections

WARNING
\bullet To avoid an electrical shock，turn the power off when wiring．
\bullet Do not wire with moistened hands．Locate away from the wet place．
\bullet Do not touch terminals when turning the power on．

Δ CAUTION
\bullet Do not miswiring．Otherwise，the meter may be broken．

2．1 Connections

Suitable connector（attached）
XG4M－3430－T：OMRON Corp．
with 2 m cable

2．2 TTL output

－Input／Output rating

Signal		Type－BP	Type－BN	Rating
$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \vec{訁} \\ & 0 \end{aligned}$	$\times 10^{0}$ to $\times 10^{4}$	Positive logic	Negative logic	TTL level Fo＝2 CMOS compatible
	POL	＋＝H，－＝L	＋＝L，－＝H	
	OVER	H at over	L at over	
	SYNC	L pulse of 10ms		
$\begin{aligned} & \stackrel{⿳ 亠 二 口}{1} \\ & \Xi \\ & \hline \end{aligned}$	LATCH	Hold at L（short－cir		$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \leqq-1 \mathrm{~mA} \\ & \mathrm{~L}=0 \text { to } 1.5 \mathrm{~V} \\ & \mathrm{H}=3.5 \text { to } 5.0 \mathrm{~V} \end{aligned}$
	ENABLE	Enable at H（open），Disable at L（short－circuit）		
	MEMORY RESET	Reset at L（short－circuit）		
	PEAK／BOTTOM MEMORY	Refer to each item		

－Measuring data output $\left(\times 10^{0}\right.$ to $\left.\times 10^{4}\right)$
Parallel BCD（1－2－4－8）code，latch output．The output is Tri－state type，so a connection to the data bus is easy．
－Polarity Output（POL）
Outputs data polarity to No． 25 pin．
－Over Output（OVER）
Outputs over display to No． 27 pin．

- Synchronization (SYNC)

Outputs L pulse of 10 ms , which synchronizes display cycle, to No. 29 pin. Readouts the data on the rising edge of this SYNC.
Wired OR connection is possible when connecting several data bus.

- Data enable input (OUTPUT ENABLE)

Outputs datum, includes POL and OVER, when opening (setting to H) No. 28 pin. When short-circuiting (setting to L) with DATA COM between No. 33 and No. 34 pin, DATA, includes POL and OVER, changes to high impedance condition. In this state, SYNC output is prohibited and the connection to the data bus is easy.

- Latch input (LATCH)

Latches BCD data by short-circuiting between No. 30 and DATA COM (No. 33 and No. 34 pins) or setting to L. Display does not latch.

- PEAK MEMORY and BOTTOM MEMORY

Switches output data to current value, peak memory value, bottom memory value, and amplitude value, by the operation of
No. 31 to No. 34 pins.

Signal	Current value	Peak memory value	Bottom memory value	Amplitude value
No. 32 pin (Peak memory)	Open H	Short-circuit L	Open H	Short-circuit L
No. 31 pin (Bottom memory)	Open H	Open H	Short-circuit L	Short-circuit L

- MEMORY RESET

Switches peak memory and bottom memory to current value by short-circuiting between No. 26 pin and DATA COM (No. 33 and No. 34 pins).

- Data common (DATA COM)

No. 33 and No. 34 pins are common for measuring data output, POL, OVER, SNYC, LATCH, OUTPUT ENABLE, PEAK MEMORY, BOTTOM MEMORY, and MEMORY RESET.

- NC

Do not use non-occupied NC pin for junction purpose.
※Do not apply 5 V DC or more due to uniform to TTL level of data output and control signal. Arrange the wiring of data output and control input/output lines apart from the power source line, relays or magnet switches, etc. of big capacity, as well as the input line.

2.3 Transistor output

Wired OR connection is possible for the measuring data, including POL and OVER, and SYNC when connecting several BCD outputs to a PC.

- Input / Output rating

Signal		Item	Type -DP	Type -DN
	$\times 10^{\circ}$ to $\times 10^{4}$	Output	Source type	Sink type
	Output capacity	DC30V 30mA Max., Saturation Voltage: 1.6 V Max.		
	OOL			
OVER	LATCH	Signal level	Input current: Max. 1 mA	
ENABLE	OFF $(\mathrm{H})=3.5$ to $5.0 \mathrm{~V}, \mathrm{ON}(\mathrm{L})=0$ to 1.5 V			
MEMORY RESET PEAK MEMORY BOTTOM MEMORY				

- Measuring data output $\left(\times 10^{0}\right.$ to $\left.\times 10^{4}\right)$

Parallel BCD code (1-2-4-8), Latch output.
Transistor turns on (ON) at 1 measuring data.
Transistor turns off (OFF) at 0 measuring data.

- Polarity Output (POL)

Outputs data polarity to No. 25 pin.
Transistor turns on (ON) at (+) display value.
Transistor turns off (OFF) at (-) display value.

- Over Output (OVER)

Outputs over display to No. 27 pin.
Transistor turns on (ON) at over display.
When exceeded 130% display, outputs both 130% display and over data. When exceeded 9999 , outputs 0 data and over data.

- Synchronization (SYNC)

Outputs L pulse of 10 ms , which synchronizes display cycle, to No. 29 pin.
Readouts the data on the rising edge of this SYNC.

- Data enable input (OUTPUT ENABLE)

Outputs datum, includes POL and OVER, when opening (setting to H) No. 28 pin.
When short-circuiting (ON) with DATA COM between No. 33 and No. 34 pin, DATA, includes POL and OVER, changes to OFF condition. In this state, SYNC output is prohibited and the connection to the data bus is easy.

- Latch input (LATCH)

Latches BCD data by short-circuiting between No. 30 and DATA COM (No. 33 and No. 34 pins). Display does not latch.

- PEAK MEMORY and BOTTOM MEMORY

Switches output data to current value, peak memory value, bottom memory value, and amplitude value, by the operation of No. 31 to No. 34 pins.

Signal	Current value	Peak memory value	Bottom memory value	Amplitude value
No. 32 pin (Peak memory)	Open	Short-circuit	Open	Short-circuit
No. 31 pin (Bottom memory)	Open	Open	Short-circuit	Short-circuit

- MEMORY RESET

Switches peak memory and bottom memory to current value by short-circuiting between No. 26 pin and DATA COM (No. 33 and No. 34 pins).

- Data common (DATA COM)

No. 33 and No. 34 pins are common for measuring data output, POL, OVER, SNYC, LATCH, OUTPUT ENABLE, PEAK MEMORY, BOTTOM MEMORY, and MEMORY RESET.

- NC

Do not use non-occupied NC pin for junction purpose.
※Arrange the wiring of data output and control input/output lines apart from the power source line, relays or magnet switches, etc. of big capacity, as well as the input line.

3.Example of connection

4.Timing chart

PorB: Peak memory value, Bottom memory value or amplitude value
t : internal operation time approx. 15 ms
T : display cycle or sampling cycle (500 ms)

- BCD data and HOLD

t : internal operation time approx. 15 ms
T : display cycle or sampling cycle (500 ms)

> | \triangle CAUTION |
| :---: |

Regarding the BCD output when supplying the power

1. Supply power shall rise to the rated voltage within 1 second after activation.
2. The model $451 \mathrm{~F} / 452 \mathrm{~F}$ may output unstable data due to initialization within 3 seconds of starting. Start data acquisition 3 seconds later after reaching the rated voltage.

5. Switch BCD output cycle

BCD output cycle is possible to choose whether display cycle or sampling cycle $(500 \mathrm{~ms})$.
Refer to our Quick manual,451F : I-01672 and 452F : I-01673, for detailed setting procedures.

Contact Information
Name : Tsuruga Electric Corporation
Address : 1-3-23 Minami-Sumiyoshi, Sumiyoshi-ku, Osaka-shi 558-0041 Japan

Digital Panel Meter, Model 451F / Meter Relay, Model 452F
 RS-232C / RS-485 Output

1. Data Output Code

Code	Output
E0	RS-232C
E1	RS-485

2. Specifications

2.1 Common specifications for RS-232C and RS-485

The measuring input and the RS-232C and RS-485 output is insulated.
Transmission : Start-Stop half-duplex transmission
Transmission speed : 4800, 9600, 19200, 38400 bps
Data length : 7bit / 8bit
Parity : None, Odd, Even
Stop bit : 1bit / 2bit
Data : In conjunction with JIS 8 units code
X parameter
Error detection : Parity (Choose BCC availability) Operation results of exclusive logic sum just after STX to ETX
Control character : STX (02H) start of text / ETX (03H) end of text
Device No. $\quad 00$ to 99 Set the device No. to each device, and match each command of device
Transmission character
: Max. 32
Transmission process
Ignored
$452 \mathrm{~F} / 451 \mathrm{~F}$ transmits response in accordance with command frame from the upper PC.

- RS-485

Connected device numbers: Max. 32, including the upper PC
Line length : Up to 500 m by using shielded twisted-pair cable, AWG28 to 22.
Terminator : Switched by the jumper at the terminal, terminated at 200Ω
NOTE followings for the use of multi-drop.

- Unify the transmission format.
- Do not duplicate the device number.

3.Connector and Connections

3.1 RS-232C

Recommended wire $\left[\begin{array}{l}\text { Solid wire }: A W G 28 \text { to } 22 \\ \text { Twisted wire }: A W G 28 ~ t o ~ \\ \text { A }\end{array}\right.$
O.D. 0.125 min.

3.2 RS-485

$$
\text { ※ Recommended wire }\left[\begin{array}{ll}
\text { Solid wire } & : A W G 28 ~ t o ~ \\
\text { Swisted wire } & \text { AWG28 to } 22 \\
\text { Twin. } \\
& \text { O.D. } 0.125 \mathrm{~min} .
\end{array}\right.
$$

Strip-off length: 9 to 10 mm
※ In case of multi-drop connection, strand twisted wire AWG28 to AWG26 and insert.

Terminator: When sort-circuiting the connector, 200Ω resistor is connected in parallel to the line Input/Output: "+" is non-inverse output, and "-" is inverse output.

- Connection

In case of RS-485 connection, up to 32 devices, includes the upper computer, are possible to connect. Specify the end station for both ends of device on the line. Set the terminator to be short-circuited for the identification of the end station. Lead wire for short-circuit is not attached. Use the converter for another identification to set the terminator.

3.3 Communication setting

Use keys on the front panel for communication setting. Refer to $451 \mathrm{~F}: \mathrm{I}-01672$ or $452 \mathrm{~F}: \mathrm{I}-01673$ for key operation.

- Transmission speed, Data length, Parity, Stop bit, BCC availability
- Device number

4. Communication command

4.1 Notes for Command

1) BCC should be added after ETX if BCC function is available.
2) All frame of command

Command: STX device No., Command or Command frame, ETX (BCC)
Response: STX device No., End code, Response, ETX (BCC)
3) Character of command is effective with 4-character from the top. Ex)RLATCH \rightarrow RLAT
4) Both figure and character is effective. Ex) WC07 0 or WC07 OFF
5) End code

Return the receive condition of the command frame.

End code	Contents
$\mathrm{A}(41 \mathrm{H})$	Normal end
$\mathrm{B}(42 \mathrm{H})$	During setting (communicates during setting)
$\mathrm{C}(43 \mathrm{H})$	Setting error (out of setting range or error)
$\mathrm{D}(44 \mathrm{H})$	BCC error (with BCC function)
$\mathrm{P}(50 \mathrm{H})$	Command error (impossible to analyze the received command)

Response at the command error

STX	Device No.			End code	ETX
$(02 \mathrm{H})$	$(30 \mathrm{H})$	$(30 \mathrm{H})$	$(50 \mathrm{H})$	$(03 \mathrm{H})$	

Device No. 00
Response during setting
STX

	Device No.	End code	ETX	(BCC)	
$(02 \mathrm{H})$	$(30 \mathrm{H})$	$(30 \mathrm{H})$	$(42 \mathrm{H})$	$(03 \mathrm{H})$	

Device No. 00

Δ CAUTION
Regarding the command when supplying the power
1. Supply power shall rise to the rated voltage within 1 second after activation.
2. The model 451F/452F may not respond due to initialization or may return
unstable response within 3 seconds of starting. Start communication 3
seconds later after reaching the rated voltage.

4.2 Command / Response

- Measuring command

Command : DATA? The current data, Request to judge
Response : response to DATA? Collect the current data, judgment
Command : RMREad, request to the current data
Response : response to RMREad, Collect the current data
Command: PMREad, request to the peak memory data
Response : response to PMREad, Collect the peak memory data
Command : BMREad, request to the bottom memory data
Response : response to BMREad, Collect the bottom memory data
Command : PBREad, request to the amplitude
Response : response to PBREad, Collect the amplitude measuring data
Data format
 Measuring value _ (20H space): within the range, $\quad *(2 \mathrm{AH})$: over the range

Command : DATA? The current data, Request to judge
Response : response to DATA?

$$
\begin{aligned}
& +9.999 \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdot \\
& +9.999 \text { AL1, AL2, ON } \cdots \cdots 452 \mathrm{~F}
\end{aligned}
$$

Command frame

X	Device No.		D	A	T	A	?	ETX (BCC)	
02H	30H	30H	44	41	54H	41H	3FH	03H	

Response End code

STX	Devi	No.	\downarrow		+	9		9	9	9	E	+	0		0	3	ETX	(BCC)
02H	30H	30H	41H	20H	2BH	39H	2EH	39H	39H	39H	45H	2BH	30H	2 CH	30H	33H	03H	

Command : PMREAD, Request to peak memory data
Response : response to PMREAD

$$
+9.999
$$

Command frame

STX	Device No.		P	M	R	E	A	D	ETX (BCC)	
02H	30H	30H	50H	4DH	52H	45H	41H	44H	03H	

Response End code

espo			d												
STX	Dev	No.	\downarrow		+	9		9	9	9	E	+	0	ETX	(BCC)
02H	30H	30H	41H	20H	2BH	39H	2EH	39H	39H	39 H	45H	2BH	30H	03H	

- Readout the device information

Command : IDNT? Read out the device information
Response : response to IDNT?

> 452F-25, No.511-000 (Model No. Soft registration No. (Tsuruga))

Command frame

STX	Device No.		I	D	N	T	?	ETX(BCC)	
02H	30H	30H	49H	44H	4EH	54H	3 FH	03H	

Response End code
Response
STX

02 H	30 H	30 H	41 H	34 H	35 H	32 H	46 H	2 DH	32 H	35 H

- Readout the judgment

Command : ALARm, Read out the judgment
Response : response to ALARm

$$
16 \text { (GO output) }
$$

Command frame

STX	Device No.		A	L	A		M		

Response End code | End code | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STX | Device No. | | |
| \downarrow | 1 | 6 | ETX (BCC) |

- Readout the setting data

Command : RC01, Read out the offset setting
Response : response to RC01.
0000
Command frame

STX	Device No.		R	C	0	1	ETX	(BCC)	
02H	30H	30H	52H	43H	30H	31H	03H		
Response End code									
STX	Devi	No.	\downarrow	0	0	0	0	ETX	(BCC)
02H	30H	30H	41H	30H	30H	30H	30H	03H	

Device No. 00

- Set the function command data

Command : WC01_0000, Set the offset
Response : response to WC01_0000. 0000

Command frame

| STX | Device No. | W | C | 0 | 1 | - | 0 | 0 | 0 | 0 | ETX(BCC) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

02 H	30 H	30 H	57 H	43 H	30 H	31 H	20 H	30 H	30 H	30 H	30 H	03 H

Response End code

STX	Device No. \downarrow		0	0	0	0	ETX(BCC)		
02 H	30 H	30 H	41 H	30 H	30 H	30 H	30 H	03 H	

- Readout the control command data

Command : RLATch, Read out the latching
Response : response to RLATch.

$$
0 \text { (OFF) }
$$

Command frame

STX	Device No.		R	L	A	T	C	H	ETX	(BCC)	Device No. 00
02H	30H	30H	52H	4CH	41H	54H	43 H	48H	03H		
Response End code											
STX	Devi	e No.	\downarrow	0	ETX	(BCC)					
02H	30H	30H	41H	30H	03H						

- Set the control command data

Command : WLATch_0, Set the latching
Response : response to WLATch_0.

$$
0 \text { (OFF) }
$$

Command frame

STX	Device No.		W	L	A	T	C	H		ETX (BCC)		
02 H	30 H	30 H	57 H	4 CH	41 H	54 H	43 H	48 H	20 H	30 H	03 H	

Response End code

STX	Device No. \downarrow			ETX		(BCC)
02 H	30 H	30 H	41 H	30 H	03 H	

- Memory control command
- Write command: Write the setting data into the EEPROM.

Command : STOR
Response : End code
Command frame

STX	Device No.		S	T	O	R	ETX	(BCC)	Device No. 00
02H	30H	30H	53H	54H	4FH	52H	03H		
Response End code									
STX	Devi	No	\downarrow	ETX	(BCC)				
02H	30H	30 H	41H	03H					Normal end

- Memory initialization: Setting datum resets to default, except of transmission speed, data length, parity, stop bit, BCC switch, and device No.

Command : DEFAult
Response : End code
Command frame

STX	Device No.		D	E	F	A	U	L	T	ETX	(BCC)	Device No. 00
02H	30H	30H	44H	45H	46H	41H	55H	4 CH	54H	03H		
Response End code												
STX	Devi	No.	\downarrow	ETX	(BCC							
02H	30H	30H	41H	03H								Normal end

4.3 Command table

- Setting command

Function	Requested command		Specified command			Applicable Model
	Command	Response	Command frame	Response	Function, range	
Scaling offset	RC01	0000	WC01_0000	0000	0 to 9999	Common
Scaling full scale	RC02	9999	WC02_9999	9999	0 to 9999	
Decimal point	RC03	0	WC03_0	0	0:0, 1:0.0, 2:0.00, 3:0.000,	
Input range selection	RC04	3	WC04_3	3	2,3	
Display cycle	RC05	1	WC05_1	1	0:500ms, 1:1s, 2:2s, 3:4s, $4: 5 \mathrm{~s}$	
Average calculation (Section, Moving)	RC06	0	WC06_0	0	$\begin{aligned} & 0: \mathrm{OFF}, 1: \mathrm{ON}, 2: 2,3: 4,4: 8, \\ & 5: 16,6: 32 \text { times } \end{aligned}$	
Offset fixing	RC07	0	WC07_0	0	1:ON, 0:OFF	
Zero fixing of 10^{0} digit	RC08	0	WC08_0	0	1:ON, 0:OFF	
Cut-off	RC09	00.0	WC09_10.0	10.0	0.1 to 19.9	
Zero set	RC10	0	WC10_1	1	1:ON, 0:OFF	
PV Display color	RC11	1	WC11_3	3	0:RR, 1:RG, 2:GR, 3:GG	452F
	RC11	3	WC11_3	3	0:RR, 3:GG	451F
SV1 Display	RC12	3	WC12_0	0	$\begin{aligned} & \text { 0:OFF, 1;AL1, 2;AL2, 3;AL3, } \\ & \text { 4:AL4, 5:RM, } 6: \mathrm{PM}, 7: \mathrm{BM}, 8: \mathrm{PB} \end{aligned}$	452F
SV2 Display	RC13	2	WC13_1	1	0:OFF, 1;AL1, 2;AL2, 3;AL3, 4:AL4, 5:RM, 6:PM, 7:BM, 8:PB	
Display shutoff timer	RC14	1, 1, 1, 99	WC14_1, 1, 1, 99	1, 1, 1, 99	1:ON, 0:OFF, 0 to 99	452F
(Setting of light out time for PV, SV1 and SV2)	RC14	1,99	WC14_1, 99	1,99	1:ON, $0: \mathrm{OFF}, 0$ to 99	451F
Power On delay	RC40	4	WC40_99	99	4 to 99	452F
Comparison data	RC41	5	WC41_5	5	5:RM, 6:PM, 7:BM, 8:PB	
AL1 Comparison value	RC42	2000	WC42_9999	9999	0 to 9999	
AL2 Comparison value	RC43	3000	WC43_9999	9999	0 to 9999	
AL3 Comparison value	RC44	7000	WC44_9999	9999	0 to 9999	
AL4 Comparison value	RC45	8000	WC45_9999	9999	0 to 9999	
AL1 Hysteresis	RC46	1	WC46_999	999	1 to 999	
AL2 Hysteresis	RC47	1	WC47_999	999	1 to 999	
AL3 Hysteresis	RC48	1	WC48_999	999	1 to 999	
AL4 Hysteresis	RC49	1	WC49_999	999	1 to 999	
AL1 Comparison method	RC50	0	WC50_0	0	0:OFF, 1:HI, 2:LO	
AL2 Comparison method	RC51	2	WC51_2	2	0:OFF, 1:HI, 2:LO	
AL3 Comparison method	RC52	1	WC52_1	1	0:OFF, 1:HI, 2:LO	
AL4 Comparison method	RC53	0	WC53_0	0	0:OFF, 1:HI, 2:LO	
Output Delay	RC54	0	WC54_99	99	0 to 99	
Comparison conditions	RC55	0	WC55_1	1	1:GO, 0:NG	
Zone setting	RC56	0	WC56_1	1	1:ON, 0:OFF	
Analog output switching	RC75	5	WC75_6	6	5:RM, 6:PM, 7:BM, 8:PB	Common
Analog output offset	RC78	0000	WC78_9999	9999	0 to 9999	
Analog output full scale	RC79	9999	WC79_9999	9999	0 to 9999	
Code registration of My setting mode	RC99 RC99	$\begin{aligned} & 42,43,44,45 \\ & 01,02,03,00 \\ & 01,02,03,00 \\ & 00,00,00,00 \end{aligned}$	WC99_42, 43, 44, 45, $01,02,03,00$ WC99_01, 02, 03, 00, $00,00,00,00$	$\begin{aligned} & 42,43,44,45 \\ & 01,02,03,00 \\ & 01,02,03,00 \\ & 00,00,00,00 \end{aligned}$	00 to 98	$\begin{aligned} & 452 \mathrm{~F} \\ & 451 \mathrm{~F} \end{aligned}$

- Measuring command

| Function | Requested command | | |
| :--- | :--- | :--- | :--- | :---: |
| Command | Response | | |
| Current value data | DATA? | | |
| | DATA? | $-+9.999 \mathrm{E}+0,16$ | |
| Current value data | RMREad | $-+9.999 \mathrm{E}+0$ | 452 F |
| Peak data | PMREad | $-+9.999 \mathrm{E}+0$ | |
| Bottom data | $-+9.999 \mathrm{E}+0$ | | |
| Amplitude data | BMREad | $-+9.999 \mathrm{E}+0$ | |

- Control command

Function	Requested command		Specified command			Applicable Model
	Command	Response	Command frame	Response	Item	
Latch	RLATch	1	WLATch 1	1	1:ON, 0:OFF	Common
Hold	RHOLd	0	WHOLd 1	1	1:ON, 0:OFF	
Alarm reset	RALRst	1	WALRst 1	1	1:ON, 0:OFF	452 F
Memory reset			MR	End code		Common

- Memory control command

Function		Requested command			Specified command	

Contact Information	
Name $:$ Tsuruga Electric Corporation	
Address : 1-3-23 Minami-Sumiyoshi, Sumiyoshi-ku, Osaka-shi	
558-0041 Japan	

