Safety Requirements

Be sure to observe

Before operation, maintenance and inspection, please carefully read this instruction manual and follow it for proper use. Please carefully read all information related to this unit and safety, and precautions before use.
This instruction manual categorizes safety precautions as "DANGER", "WARNING", and "CAUTION". Each of them is an important description related to safety. Be sure to observe.

Improper use by neglecting the following precautions may result in the potential for fire, serious injuries, and/or death.

CAUTION property damage.

Thank you for purchasing TSURUGA's Speed ratio meter. For instructions on how to use this product properly and optimally for a long period of time, please be sure to read this manual thoroughly before use.

When you purchase the product with optional equipment: Please refer to the operation manual of the optional equipment.

Before operation, maintenance and inspection, please carefully read this instruction manual and follow it for proper use.

Differential input series
4961FA-DRT
4961XA-RMT Instruction Manual

After reading, be sure to store this manual in a safe,
convenient place where operators can always refer to it easily.

CAUTION

Electric Shock.

Be sure to turn the power OFF when wiring as well as inspecting the unit.
Failure to do so could result in electric shock.

DO NOT block the ventilation holes on the side of the main unit.
DO NOT put any foreign objects or materials inside the unit through these holes.
Failure to follow this could result in abnormal heat generation and/or malfunctions.

DO NOT touch the unit with wet (or sweaty) hands when inspecting or for wiring.

Failure to do this could result in electric shock.

[^0]
INDEX

13. Mode 14 Revolution speed difference mode 19
13-1. Content
13-2. Measurement display
13-3. Parameter setting
14. Mode 15 Passing speed mode 21
14-1. Content
14-3. Parameter setting
14-4. Teaching function
15. Mode 16 Time lag mode 25
15-1. Content
15-2. Measurement display
15-3. Parameter setting
16. Mode 99 Test mode 27
17. Parameter setting 28
17-1. Content
17-2. Operation
18. Function setting 30
18-1. Functions
18-2. Content
18-3. Operation
19. Error Display 36
20. Option FVC 3720-1. Option FVC External Dimensions20-2. Option FVC setting
21. Option BCD3921-1. Option BCD External Dimensions

Installation to the Start of Operation

This unit is designed for use according to your measurement purposes.
Before use, follow the procedures below from installation to the start of operation.

Check before use

Check before use	p.3-5

-Unit model

- Specifications
- Component part names and
functions
- External dimensions

Function (action configuration) settings	p.3-35

(1) Press and hold the $\widehat{\text { SHIFT }}+$ FUNC keys for 5 seconds or more and start setting.
(2) Press the $\boldsymbol{\Delta}$ key to select the item, and press the ENT key to start changing the setting value.
(3) Press the \square key to move to another digit, and after changing the value using the \triangle key, use the ENT key to finish the setting value change.
(4) After setting all functions, use the SET key to finish setting.

$\begin{array}{l}\text { Connection with the } \\ \text { power and sensor }\end{array}$	p.6-7

Parameter settings \quad p.12-29

1) Press and hold the SHIFT + PAR keys for 5 seconds or more and start setting
(2) Press the $\boldsymbol{\Delta}$ key to select the item, and press the ENT key to start changing the setting value.
(3) Press the \square key to move to another digit, and after changing the value using the \triangle key, use the ENT key to finish the setting value change.
(3) After setting all parameters, use the SET key to finish setting.

(1) Connection with the power
(2) Connection with various sensors
value.
the unit without setting various functions.

Memory function settings	p.9-11

(1) Press the MEM key once to display the MAX value.
(2) Press the MEM key again to display the MIN value.
(3)Press the MEM key again to show A-input value
(excluding mode 16)
(4)Press the MEM key again to show B-input value (excluding mode 16)
(5) Press the MEM key once again to display the normal measurement

Unit Model

Please check the model number of the equipment purchased.
4961X A - RMT 4961F A - DRT

- Ratio meter optional equipment

Symbol	Function
RMT	Standard input : Supports the sensor input, including rotary encoders, and magnetic sensors
DRT	Differential input Supports the line driver output, including AC servo motors

Power

Symbol	Power
A	AC power $(85-264 \mathrm{VAC})$

Input type

Symbol	Input type
4961 X	Standard input : Supports the sensor input, including rotary encoders, and magnetic sensors
4961 F	Differential input Supports the line driver output, including AC servo motors

1．Specifications

Unit model		4961XA－RMT ，4961FA－DRT					
Display	Action mode	Error ratio	Simple ratio	Composition ratio	Revolution count difference	Passing speed	Time lag
	Display 1	$\begin{gathered} -99999 \sim 99999 \\ \pm 5 \text { digits } \end{gathered}$	$\begin{gathered} 0 \sim 99999 \\ 5 \text { digits } \\ \hline \end{gathered}$		$\begin{gathered} \hline-99999 \sim 99999 \\ \quad \pm 5 \text { digits } \end{gathered}$	$\begin{gathered} 0 \sim 99999 \\ 5 \text { digits } \end{gathered}$	$\begin{array}{c\|} \hline 0: 00: 00 \sim 0: 59: 59 \\ (\text { Hour:Minute:Second / base } 60 \text { display) } \end{array}$
	Display 2						0：00－999：99 （Hour：Minute：Second／base 10 display）
		With zero suppression function					
Decimal point position		0 to 4 digits after the decimal point（ $00000 \sim 0.0000$ ）					
Number indicator		Red 7 segment LED，Letter height 22mm， 6 digits，－display available					
Input range		$0.0067 \mathrm{~Hz} \sim 100 \mathrm{kHz}$				$10 \mathrm{msec} \sim 3600 \mathrm{~s}$	
Measurement accuracy		$\pm 0.1 \%$					
Filter		Switches between $100 \mathrm{kHz}, 30 \mathrm{kHz}, 10 \mathrm{kHz}$ ，and 20 Hz using the parameter． Note that you can switch between only 10 kHz and 20 Hz in a magnetic sensor，and its contact is only 20 Hz ．					
Display cycle		$0.2,0.5,1,2,5,10,15,30,60 \mathrm{sec}$ ．（changeable in the parameter settings） For transistor output and for BCD output，data is refreshed at the cycle time set here．For voltage output，data is refreshed every 10 ms ．					
Pre－scale function		Parameter setting system using the front panel keys． The teaching（combination）of display values are also available．					．
Memory function		The maximum／minimum measurement values can be memorized and displayed in the indicator．					
Hi／Lo limit judgement		Hi／Lo limit judgement can be shown at main display					
Auto zero time		$0.1 \sim 150 \mathrm{sec}$.				$0.1 \sim 3600 \mathrm{sec}$.	
Pre－arithmetic function		Updates the displayed value according to the elapsed time after the pulse stops．					
Operating temperature		$0 \sim 45^{\circ} \mathrm{C}$（No condensation）					
Teaching function Insulation resistance		Performs scaling automatically by setting the display value with a certain signal input．（only in the tachometer and flowmeter modes）					
		$10 \mathrm{M} \Omega$ or more（at DC500V Mega）					
Voltage proof		AC1500V or more 1min					
Operating humidity		$35 \sim 85 \% \mathrm{RH}$（No condensation）					
Operating atmosphere		No corrosive gas					
Protection function		Front panel：IP66（or equivalent），Rear terminal block：IP20					
Casing material		ABS resin					
External dimensions		W96 \times H48 \times D92mm（DIN）					
Weight		approx． $250 \mathrm{~g} /$ approx． 300 g including FVC or BCD option					

2．Component Part Names and Functions

－Front

－Rear

№	Name	Function
（1）	SIG lamp	Lights up when the sensor signal is input
（2）	LL lamp	Lights up when the Lo Lo limit is judged．
（3）	L lamp	Lights up when the Lo lomot is judged．
（4）	H lamp	Lights up when the Hi limit is judged．
（5）	HH lamp	Lights up when the Hi Hi limit is judged．
（6）	MAX amp	Lights up when the maximum value is displayed
7	MIN lamp	Lights up when the minimum value is displayed
（8）	TEA lamp	Lights up when the teaching function is set
（9）	PEAK lamp	Not used
（10）	BTM lamp	Not used
（1）	Unit label space	Space for attaching the supplied unit labels
（12）	Main display	Displays the measurement value
（13）	SET／SHIFT key	Finishes the setting in various setting modes Pressing this key with other keys switches to various setting modes
（14）	MEM／TEACH key	Switches to the memory display Pressing this key with the SET key goes to the teaching setting mode
（15）	$\mathbf{\Delta}$（UP）／PARA key	Changes the selected items in various setting modes，or numerical values Pressing this key with the SET key switches to the parameter setting mode
（16）	（NEXT）／FUNC key	Changes the selected digit in various setting modes Pressing this key with the SET key switches to the function setting mode
（17）	ENT／MODE key	Selects the changed item（s）in various setting modes Pressing this key with the SET key switches to the mode setting mode
（18）	Terminal block	
（19）	Rear panel	
（20）	Terminal block cover	
（21）	Mounting adapter	

分	PS	ℓ	cm	m^{3}	分	PS	ℓ	cm	m^{3}	FVT
秒	${ }^{\circ} \mathrm{C}$	kHz	rpm	$\ell_{\min }$	秒	${ }^{\circ} \mathrm{C}$	kHz	rpm	${ }^{\ell}$ min	TRT
										FVC
時：分：秒	sec	min	rps	Hz	h：m：s	sec	min	rps	Hz	TRC
										BCD
分：秒：秒 10	m	mm	ℓ	min	$\mathrm{m}: \mathrm{s}: \frac{\text { 秒 }}{10} \mathrm{r}$	$\mathrm{m}^{\text {h }}$	$\underset{\mathrm{s}}{\mathrm{~mm}}$	¢	$r_{\min }$	RMT
				min						DRT
	\％	$\mathrm{m}_{\mathrm{min}}$	km_{h}	$\mathrm{mm}_{\mathrm{min}}$		\％	$m_{\text {min }}$	km_{h}	$\underset{\min }{\mathrm{mm}}$	SDT
										SDC

4. Installation to the Panel

Mount this unit to the panel according to the following procedures.
Check that the mounting panel is thick enough $(1.0 \sim 5 \mathrm{~mm})$ before mounting operation.

1 Attach the provided waterproof gasket to the panel surface.

* If waterproofing is not necessary, skip this step.
(1) Remove the external frame with the cutting lines(backing paper + waterproof gasket) from the gasket sheet.
(Adhesive paste is applied on the both sides of the waterproof gasket.)

External frame
External frame
(backing paper +
waterproof gasket)
(2) Attach the provided waterproof gasket to the edges of the unit attachment panel and opening, aligning with its left and right sides, and then peel off the backing paper.

* At this time, be sure not to displace or wrinkle the waterproof gasket. Also, do not expand the waterproof gasket vertically and/or horizontally past the attachment panel's edges.

$\widehat{4}$ caution

About waterproofing

- Front panelः IP66 (or equivalent)
- Rear terminal block: IP20 (non-waterproof) Do not install the unit in the following places or conditions
(1) Places regularly subject directly to water
(2) Places subject to oil splashes and/or medical supplies
(3) Places subject to water splashes on the rear or side face(s).
* The front panel is IP66 (or equivalent) waterproofed, but if water is splashed on the unit, be sure to wipe it off the unit as soon as possible

3 Attach the mounting adapter to the unit. Slide the mounting adapter until it lightly touches the panel surface.

5. Wiring to Power Source and Sensors (4961XA)

$5-1$. Wiring to Power Source and Sensors (4961XA-RMT)

Note)
In order to prevent electric shock, be sure to turn the power OFF. Be sure to use the unit under the rated voltage (AC power specifications: $85 \sim 264 \mathrm{VAC}$). The inverter output (output to connect a motor) cannot be used as power. Connection wiring from sensors shall not be kept in the same or parallel conduit or cable as the power source, power or high voltage cables. If you fail to separate the wiring, noise may be superimposed on the signal wire, resulting in malfunctions. Use shielded wire for input power connections with the shortest possible metal conduit.
© Please refer to Page 7 for the connecting precautions.
For 4961XA-RMT
-Terminal block connection diagram

- Input specifications (4961XA)

Item	Description		
Power	AC	$85-264 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$	
Consumption power	10VA		
Sensor power output	DC+12V Max. 100 mA		
	(When ratio measurement option RMTR is installed, the total amperage should be 100 mA max.)		
Open collector input	Open collector (NPN) input		
	LO input	Load capacity 12 mA or more	
		$0 \sim 3 \mathrm{~V}$	
	HI input	Leakage current 0.5 mA or less	
	Maximum frequency	100 kHz (Minimum pulse width 5 micro second)	
Contact input	For no-voltage contact. Short-circuit (5) and (6) to use.		
	Contact capacity	Voltage 12V, Current 15mA or more	
	Maximum frequency	20 Hz (Minimum pulse width 25 micro second)	
Voltage input	LO input	$0 \sim 1.5 \mathrm{~V}$	
	HI input	$4.0 \sim 30 \mathrm{~V}$	
	Input resistance	$10 \mathrm{k} \Omega$	
	Maximum frequency	30 kHz (Minimum pulse width 17 micro second)	
Magnetic sensor input	Input resistance	$10 \mathrm{k} \Omega$	
	Input voltage	$1 \mathrm{~Hz} \sim 100 \mathrm{~Hz}$	0.3 ~ 30Vp-p
		$\sim 1 \mathrm{kHz}$	$1.5 \sim 30 \mathrm{Vp}-\mathrm{p}$
		$\sim 10 \mathrm{kHz}$	$6 \sim 30 \mathrm{Vp}-\mathrm{p}$
	Maximum frequency	10 kHz (Minimum pulse width $50 \mathrm{micro} \mathrm{second)}$	

- Input specifications(-RMT)

| Item | Description |
| :--- | :--- | :--- |
| | DC+12V Max.100mA |
| | The total amperage combined with the base power output of |
| | 12 V is 100mA. |

- Input circuit

Open collector sensor

Relay switch

Voltage output sensor

Magnetic sensor

5-2. Wiring to Power Source and Sensors (4961FA-DRT)

Note)
In order to prevent electric shock, be sure to turn the power OFF. Be sure to use the unit under the rated voltage (AC power specifications: $85 \sim 264 \mathrm{VAC}$). The inverter output (output to connect a motor) cannot be used as power. Connection wiring from sensors shall not be kept in the same or parallel conduit or cable as the power source, power or high voltage cables. If you fail to separate the wiring, noise may be superimposed on the signal wire, resulting in malfunctions. Use shielded wire for input power connections with the shortest possible metal conduit.
© Wiring requirements

- Be sure to turn the power OFF before any wiring procedure.
- The crimped terminals for the connecting terminals should be for M3, with the width below 7 mm .
- When the connection is completed, the transparent terminal cover must be attached.

For 4961FA-DRT

- Terminal block connection diagram

- Terminal block connection diagram(4961FA)

Item	Description	
Power	AC	$85 \sim 264 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
Sensor power output	C+12V Max. 100 mA (When ratio measurement option RMTR is installed, the total amperage should be 100 mA max.)	
Differential input	Connection to	Differential line driver
	Differential input voltage	
	Maximum frequency	100 kHz (Minimum pulse width 5micro second)

- Line driver input circuit(4961FA-DRT)

6. Basic Setting Procedure

Conduct settings as indicated below based on the intended use.

7. Keys to be Used for Various Settings and Their Applications

The front panel keys to be used for mode, parameter, and function settings, as well as various settings (teaching function / high and low set point 1 value setting / memory function) are described below.

- Operation during the normal measurement display / memory display

№	Name	Function
①	SHIFT key	Pressing this key with other keys switches to various setting modes
②)	MEM key	Switches to the memory display (Show A input and B input measurement values in mode11 ~ 14)
	TEACH key	Pressing and holding this key with the SHIFT key for 5 seconds switches to the teaching setting mode
(3)	PARA key	Pressing and holding this key with the SHIFT key for 5 seconds switches to the parameter setting mode
(4)	FUNC key	Pressing and holding with the SHIFT key for 5 seconds switches to the function setting mode
(5)	MODE key	Pressing and holding this key with the SHIFT key for 5 seconds switches to the mode setting mode

- Operation in the various setting modes

№	Name	Function
1	SET key	Setting completion key in various setting modes
(2)	$\mathbf{\Delta}$ (UP) key	Changes the selected items in various setting modes, or numerical values
(3)	$>$ (NEXT) key	Changes the selected digit in various setting modes
(4)	ENT key	Selects the changed item in various setting modes

8. Memory Function / Input and display

8-1. Memory function

- Key to be used for the memory function and display

Switch the normal display, the maximum value display, minimum value display, A input display, and B input display.
Press this key for 5 seconds to clear the memory.
(A input display and B input display are only shown in mode $11 \sim 14$)

- During measurement, the maximum display value (MAX value) and minimum display value (MIN value) per display update cycle is always maintained.
- Pressing the MEM key allows you to check the maximum and minimum values maintained during the measurement.
- Refer to the graph below, the maintained MAX value and the MIN value would be cleared when measurement is reset (when mode or setting measurement is changed, or power is on). Can also erase the values by press the MEM key for 5 seconds.

8-2. Input and display

\bullet Regarding mode11 ~ 14, press MEM key to show A input and B input values during the MIN value is displayed.

Operation

A input display

Press MEM key once during A input to show B input measurement value. (mode $11 \sim 14$ only)
("B." is displayed in front of the value)

B input display

Press MEM key once during B input to return to normal measurement display.

Memory clear

- During normal measurement display or memory display, press MEM key for 5 seconds to clear maintained MAX and MIN values.

9. Mode Setting

There are 7 different modes to choose from. Each represents specific type of measurement.

Mode No.	Mode description	Details
11	Error ratio mode	displays (B-A)/A
12	Simple ratio mode	displays B/A
13	Composition ratio mode	displays B/(A+B)
14	Revolution speed difference mode	displays B-A
15	Passing speed mode	displays 60/T (see next mode)
16	Time lag mode	displays elapsed time, T, from A-input to B-input
99	Test mode	self diagnosis of the internal circuit

9-1. Procedures

Normal measurement display

Maximum value display

Press $\boldsymbol{\Delta}$ key to change the display of mode $11 \sim$ mode 99 . Stop when the desired mode number is displayed and press SET] key to change the measurement mode.

Change the mode and back to normal measurement display
Press SHIFT and MODE keys at the same time during normal measurement display, main display blinks. Press for 5 seconds to show the mode number.

Initial factory default setting is at mode 11 (error ratio mode).
When the mode is changed, each set value (parameter, function) defaults back to the factory shipment value. When mode 99 is selected, no setting values will be initialized, and mode 99 selection will not be saved.

10．Mode 11 Error ratio mode

In mode 11 （error ratio mode），the error ratio is displayed by calculating from the display values of Input A and Input B．

Mode 11 Error ratio mode

Error ratio $=\frac{B-A}{A}$
A ：Input A display value（input basis） B ：Input B display value（input comparison）

10－1．Content

For the input frequency of Input A and Input B，obtain the display value using the calculation below．
The P01－P07 values can be set in the parameter setting mode．（Refer to page 28「17．Parameter setting」）

Display value calculation			
Input A	A（Hz）		External input pulse
	Parameter setting value	P01	Pulse count per revolution
		P02	Setting revolution speed（detection section）（rpm）
		P03	Value to be displayed
	Input A Displayed value（A＇）		（（A／P01）＊60）×（P03／P02）
Input B	B（Hz）		External input pulse
	Parameter setting value	P04	Pulse count per revolution
		P05	Setting revolution speed（detection section）（rpm）
		P06	Value to be displayed
	Input B Displayed value（B＇）		（（B／P04）＊60）×（P06／P05）
Ratio display	Parameter setting value	P07＝0	（ $\left.\mathrm{B}^{\prime}-\mathrm{A}^{\prime}\right) / \mathrm{A}^{\prime}$
		P07＝1	（（ $\left.\left.\mathrm{B}^{\prime}-\mathrm{A}^{\prime}\right) / \mathrm{A}^{\prime}\right) * 100$

－When setting P07 to＂ 1 ＂，the value is displayed as a percentage．

10－2．Measurement display

The ratio display calculation results are displayed as below．
Each display value for Input A and Input B can be checked in the memory mode．
（Refer to page 9 「8．Memory Function／Input and display」）
－Positive value
－Negative value

The decimal point location is determined as specified in the parameter setting P08．

10-3. Parameter setting

In the parameter settings, the displayed values for each input, display cycle, auto zero time, and input filter can be set.

(1) Parameters

The following parameters (P01-P12) can be set in mode 11.

-Parameters in mode 11						
No.		Setting item		Description	Input range	Default value
P01	$\left\lvert\, \begin{gathered} \text { Input } \\ \mathrm{A} \end{gathered}\right.$	Pulse count per revolution	$\left\lvert\, \begin{gathered} \text { Input } \\ \mathrm{A} \end{gathered}\right.$	Enter the pulse count per revolution	$1 \sim 9999 \mathrm{P} / \mathrm{r}$	1P/r
P02		Setting revolution speed (detection section)		Revolution speed in the detection section	$1 \sim 99999$	1000rpm
P03		Value to be displayed (with decimal point)		Actual value to be displayed on the panel in the above revolution speed	$0.0001 \sim 99999$.	1000
P04	$\left\lvert\, \begin{gathered} \text { Input } \\ \text { B } \end{gathered}\right.$	Pulse count per revolution	$\left\lvert\, \begin{gathered} \text { Input } \\ \text { B } \end{gathered}\right.$	Enter the pulse count per revolution	$1 \sim 9999 \mathrm{P} / \mathrm{r}$	1P/r
P05		Setting revolution speed (detection section)		Revolution speed in the detection section	$1 \sim 99999$	1000rpm
P06		Value to be displayed (with decimal point)		Actual value to be displayed on the panel in the above revolution speed	$0.0001 \sim 99999$.	1000
P07	Unit used for displayed value		Designate $\times 1$ or \%		Designate 0 ($\times 1$) or 1 (\%)	0
P08	Decimal point location		Designate the decimal point location		$00000 \sim 0.0000$	No decimal point
P09	Display cycle		Sets the display update cycle		0.2/0.5/1.0/2.0/5.0/ 10/15/30/60 sec.	1 sec .
P10	Auto zero time		Sets the time from when the input pulse is gone to when the display becomes " 0 ".		$0.1 \sim 150 \mathrm{sec}$.	6 sec.
P11	Input filter		Selects a minimum frequency that is larger than the maximum frequency of the input signal.		Input A : $10 / 30 / 100 / 0.02 \mathrm{kHz}$	10 kHz
P12			Input B : $10 / 30 / 100 / 0.02 \mathrm{kHz}$	10 kHz		

- Display cycle (Parameter setting P09)

The display cycle for Input A, Input B, and ratio display can be set in P09.
Displays are updated every display cycle specified in P09, and new measurement results are indicated.

- Auto zero time (Parameter setting P10)
- When the Input A value is not entered even after the auto zero time specified in P10 has elapsed, the display value for Input A will be 0 .
- When the Input B value is not entered even after the auto zero time specified in P10 has elapsed, the display value for Input B will be 0 .
※ When you set a smaller value than the input pulse cycle for Input A and Input B as auto zero time, normal measurement cannot be performed because the auto zero function operates with each pulse.

Input filter (Parameter setting P11, P12)

- The Input A filter can be set in P11.
- The Input B filter can be set in P12. When setting the filter, select a filter value that is larger than and closest to the frequency you want to input.
※ When the duty (proportion of ON time for one cycle) for the input signal is low, normal pulse reception may fail due to signal attenuation even if you have set the filter with a larger value than the input frequency. In such cases, set the filter with an even larger value.

10-4. Teaching function

(1) Teaching function

When the actual revolution speed can be measured, use the teaching function to make the settings easier. The teaching function can be used to automatically set the parameter values and display the desired values.

Input A in teaching function			Set the teaching function setting value F_{A} in the teaching function setting mode (refer to the next section)
Input pulse in the teaching function setting		A	
Input A Teaching function setting value		$\mathrm{F}_{\text {A }}$	
Parameter setting value	Pulse count per revolution	P01	
	Setting revolution speed (detection section)	$\mathrm{P} 02=\mathrm{A} \times 60(\mathrm{~Hz}) / \mathrm{P} 01$	Automatically set the P02 and P03 value using the input pulse for Input A and the teaching function setting value F_{A}.
	Value to be displayed	$\mathrm{P} 03=\mathrm{F}_{\mathrm{A}}$	
Input B in teaching function			Set the teaching function setting value F_{B} in the teaching function setting mode (refer to the next section)
Input pulse in the teaching function setting		B	
Input B Teaching function setting value		F_{B}	
Parameter setting value	Pulse count per revolution	P04	
	Setting revolution speed (detection section)	$\mathrm{P} 05=\mathrm{B} \times 60(\mathrm{~Hz}) / \mathrm{P} 04$	Automatically set the P05 and P06 values using the input pulse for Input A and the teaching function setting value F_{B}.
	Value to be displayed	$\mathrm{P} 06=\mathrm{F}_{\mathrm{B}}$	

- Input revolution speed range

The revolution speed range where the teaching function can be performed is described below.
When the input revolution speed is beyond the input revolution speed range, "EE-2" is displayed. (Refer to P36. 「19. Error Display」)

1 rpm \leqq Input revolution speed range $(※)<99999$ rpm

input revolution speed (Input A) $=\mathrm{A} \times 60(\mathrm{~Hz}) / \mathrm{P} 01$ input revolution speed (Input B) $=\mathrm{B} \times 60(\mathrm{~Hz}) / \mathrm{P} 04$

Displays "EE-2" for a second, and then returns to the normal measurement display.
※ Since the P02 and P05 calculation values are maintained after truncating the values after the decimal point, the teaching function setting value for the input you have entered may not be displayed depending on the input value and/or the the teaching function setting value.
※ When starting the teaching function setting mode with OVER displayed, "99999" is displayed at first.
※ The teaching function setting value can be entered within the range between 0.0001 and 99999. If you enter a value beyond the input range, and press SET key, the displayed value will blink for a second, and the display will return to the teaching function setting mode.

Press SHIFT and TEACH keys at the same time during normal measurement display, the main diplay blinks.
Press the keys for 5 seconds to move to teaching function setting mode.
TEA_LED lights up during teaching function setting mode.

When the teaching function setting mode starts, the alternate display for Input A is performed.
"A. alternately.

- On the alternate display, press $\boldsymbol{\Delta}$ to move to the Input B alternate display.
- On the alternate display, press ENT key to move to the Input A setting mode.
- On the alternate display, press SET key to save the changed contents, and return to the normal measurement display.

```
Setting mode
```



```
- Use key to select the digit you want to change. Use \(\mathbf{\Delta}\) key to change the value of the selected digit. Enter the value you want to display for Input A.
- Select the decimal point to change the decimal point display digit using \(\mathbf{\Delta}\) key.
- While in the setting mode, press ENT key to move to the Input B alternate display.
- While in the setting mode, press SET key to save the changed contents and return to the normal measurement display.
```

"b. alternately.

- On the alternate display, press $\boldsymbol{\Delta}$ to move to the Input A alternate display.
- On the alternate display, press ENT key to move to the Input B setting mode.
- On the alternate display, press SET key to save the changed contents, and return to the normal measurement display.

Setting mode

- Use key to select the digit you want to change. Use $\mathbf{\Delta k e y}$ to change the value of the selected digit. Enter the value you want to display for Input B.
- Select the decimal point to change the decimal point display digit using $\mathbf{\Delta}$ key.
- While in the setting mode, press ENT key to move to the Input A alternate display.
- While in the setting mode, press SET key to save the changed contents and return to the normal measurement display.

11．Mode 12 Simple ratio mode

In mode 12 （simple ratio mode），the simple ratio is displayed by calculating from the display values of Input A and Input B．

Mode 12 Simple ratio mode

Simple ratio $=\frac{B}{A} \quad \begin{aligned} & \text { A ：Input A display value（input basis）} \\ & \text { B ：Input B display value（input comparison）}\end{aligned}$

11－1．Content

For the input frequency of Input A and Input B，obtain the display value using the calculation below．
The P01－P07 values can be set in the parameter setting mode．（Refer to page 28「17．Parameter setting」）

Display value calculation			
Input A	A（Hz）		External input pulse
	Parameter setting	P01	Pulse count per revolution
		P02	Revolution speed in the detection section（rpm）
		P03	Value to be displayed
	Input A Displayed value（A＇）		（（A／P01）＊60）×（P03／P02）
Input B	B（Hz）		External input pulse
	Parameter setting	P04	Pulse count per revolution
		P05	Revolution speed in the detection section（rpm）
		P06	Value to be displayed
	Input B Displayed value（ B^{\prime} ）		（（B／P04）＊60）×（P06／P05）
Ratio display	Parameter setting	$\mathrm{P} 07=0$	$\mathrm{B}^{\prime} / \mathrm{A}^{\prime}$
		P07＝1	$\left(\mathrm{B}^{\prime} / \mathrm{A}^{\prime}\right) * 100$

－When setting P07 to＂1＂，the value is displayed as a percentage．

11－2．Measuremet display

The ratio display calculation results are displayed as below．
Each display value for Input A and Input B can be checked in the memory mode．
（Refer to page 9 「8．Memory Function／Input and display」）

The decimal point location is determined as specified in the parameter setting P08．

11－3．Parameter setting • Teaching function

Parameter and teaching function setting procedure in mode 12 is the same as mode 11.

12．Mode 13 Composition ratio mode

In mode 13 （composition ratio mode），the composition ratio is displayed by calculating from the display values of Input A and Input B．

\section*{| Mode13 | Composition ratio mode |
| :--- | :--- |}

Composition ratio $=\frac{B}{A+B} \quad \begin{aligned} & \text { A ：Input A display value（input basis）} \\ & \text { B ：Input B display value（input comparison）}\end{aligned}$

12－1．Content

For the input frequency of Input A and Input B，obtain the display value using the calculation below．
The P01－P07 values can be set in the parameter setting mode．（Refer to page 28「17．Parameter setting」）

Display value calculation			
Input A	A（Hz）		External input pulse
	Parameter setting	P01	Pulse count per revolution
		P02	Revolution speed in the detection section（rpm）
		P03	Value to be displayed
	Input A Displayed value（ A^{\prime} ）		（（A／P01）＊60）×（P03／P02）
Input B	B（Hz）		External input pulse
	Parameter setting	P04	Pulse count per revolution
		P05	Revolution speed in the detection section（rpm）
		P06	Value to be displayed
	Input B Displayed value（ B^{\prime} ）		（（B／P04）＊60）×（P06／P05）
Ratio display	Parameter setting	P07＝0	$\mathrm{B}^{\prime} /\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)$
		P07＝1	$\left(\mathrm{B}^{\prime} /\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\right)^{*} 100$

－When setting P07 to＂ 1 ＂，the value is displayed as a percentage．

12－2．Measuremet display

The ratio display calculation results are displayed as below．
Each display value for Input A and Input B can be checked in the memory mode．
（Refer to page 9 「8．Memory Function／Input and display」）

The decimal point location is determined as specified in the parameter setting P08．

12－3．Parameter setting • Teaching function

Parameter and teaching function setting procedure in mode 13 is the same as mode 11.

13．Mode14 Revolution speed difference mode

In mode 14 （revolution speed difference mode），calculates and displays the difference between the display values of Input A and Input B．

Mode 14 Revolution speed difference mode

$$
\begin{array}{ll}
\text { Revolution speed difference }=\mathrm{B}-\mathrm{A} & \text { A : Input A display value (input basis) } \\
\text { B : Input B display value (input comparison) }
\end{array}
$$

13－1．Content

For the input frequency of Input A and Input B，obtain the display value using the calculation below．
The P01－P07 values can be set in the parameter setting mode．（Refer to page 28「17．Parameter setting」）

Display value calculation			
Input A	A（Hz）		External input pulse
	Parameter setting	P01	Pulse count per revolution
		P02	Revolution speed in the detection section（rpm）
		P03	Value to be displayed
	Input A Displayed value（A＇）		（（A／P01）＊60）×（P03／P02）
Input B	B（Hz）		External input pulse
	Parameter setting	P04	Pulse count per revolution
		P05	Revolution speed in the detection section（rpm）
		P06	Value to be displayed
	Input B Displayed value（B＇）		（（B／P04）＊60）×（P06／P05）
Ratio display	$B^{\prime}-A^{\prime}$		

－When setting P07 to＂1＂，the value is displayed as a percentage．

13－2．Measuremet display

The ratio display calculation results are displayed as below．
Each display value for Input A and Input B can be checked in the memory mode．
（Refer to page 9 「8．Memory Function／Input and display」）
－Positive value
Negative value

The decimal point location is determined as specified in the parameter setting P08．

13-3. Parameter setting

In the parameter settings, the displayed values for each input, display cycle, auto zero time, and input filter can be set.

(1) Parameters

The following parameters (P01-P11) can be set in mode 14.

-Parameters in mode 14						
No.		Setting item		Description	Input range	Default value
P01	$\begin{gathered} \text { Input } \\ \mathrm{A} \end{gathered}$	Pulse count per revolution	$\begin{gathered} \text { Input } \\ \mathrm{A} \end{gathered}$	Pulse count per revolution	$1 \sim 9999 \mathrm{P} / \mathrm{r}$	$1 \mathrm{P} / \mathrm{r}$
P02		Revolution speed in the detection section		Revolution speed in the detection section	$1 \sim 99999$	1000rpm
P03		Value to be displayed (with decimal poin)		Actual value to be displayed on the panel in the above revolution speed	$0.0001 \sim 99999$.	1000
P04	$\left\lvert\, \begin{gathered} \text { Input } \\ \text { B } \end{gathered}\right.$	Pulse count per revolution	$\left\|\begin{array}{c} \text { Input } \\ \text { B } \end{array}\right\|$	Pulse count per revolution	$1 \sim 9999 \mathrm{P} / \mathrm{r}$	1P/r
P05		Revolution speed in the detection section		Revolution speed in the detection section	$1 \sim 99999$	1000rpm
P06		Value to be displayed (with decimal poin)		Actual value to be displayed on the panel in the above revolution speed	$0.0001 \sim 99999$.	1000
P07	Decimal point location		Designate the decimal point location		$00000 \sim 0.0000$	No decimal point
P08	Display cycle		Sets the display update cycle		0.2/0.5/1.0/2.0/5.0/10/15/30/60 sec.	1 sec .
P09	Auto zero time		Sets the time from when the input pulse is gone to when the display becomes " 0 ".		$0.1 \sim 150 \mathrm{sec}$.	6 sec.
P10	Input filter		Selects a minimum frequency that is larger than the maximum frequency of the input signal.		Input A : $10 / 30 / 100 / 0.02 \mathrm{kHz}$	10 kHz
P11			Input B : $10 / 30 / 100 / 0.02 \mathrm{kHz}$	10 kHz		

- Display cycle (Parameter setting P08)

The display cycle for Input A, Input B, and ratio display can be set in P08.
Displays are updated every display cycle specified in P08, and new measurement results are indicated.

- Auto zero time (Parameter setting P09)
- When the Input A value is not entered even after the auto zero time specified in P09 has elapsed, the display value for Input A will be 0 .
- When the Input B value is not entered even after the auto zero time specified in P09 has elapsed, the display value for Input B will be 0 .
※ When you set a smaller value than the input pulse cycle for Input A and Input B as auto zero time, normal measurement cannot be performed because the auto zero function operates with each pulse.
- Input filter (Parameter setting P10, P11)
- The Input A filter can be set in P10.
- The Input B filter can be set in P11. When setting the filter, select a filter value that is larger than and closest to the frequency you want to input.
※ When the duty (proportion of ON time for one cycle) for the input signal is low, normal pulse reception may fail due to signal attenuation even if you have set the filter with a larger value than the input frequency. In such cases, set the filter with an even larger value.

13-4. Teaching function

Teaching function is the same as mode 11.

14．Mode 15 Passing speed mode

In mode 15 （passing speed mode），calculates and displays the passing speed between A and B ．

Mode 15 Passing speed mode

14－1．Content

For the input time lag T of Input A and Input B，obtain the passing speed between 2 points using the calculation below．
The P01－P03 values can be set in the parameter setting mode．（Refer to page 28「17．Parameter setting」）

Display value calculation		
Time from the Input A rising edge to the Input B rising edge	T（sec．）	
Parameter setting value	P01	Distance between sensor A and sensor B（m）
	P02	Passing speed between 2 points $(\mathrm{m} / \mathrm{sec})$
	P03	Value to be displayed
Display	Passing speed	P01／T＊（P03／P02）

14－2．Measured value display

The calculation result of the passing speed between 2 points is displayed as below．

The decimal point location is determined as specified in the parameter setting P08．
※ When the time width between A and B is 10 msec or less，the error display（EE－1）is indicated．
（Refer to page $36 「 19$ ．Error display」）

13-3. Parameter setting

In the parameter settings, the displayed values for each input, auto zero time, and input filter can be set.

(1) Parameters

The following parameters (P01-P06) can be set in mode 15.

\bullet Parameters in mode 11				
No.	Setting item	Description	Input range	Default value
P01	Distance between 2 points	Distance input between sensors (fixed decimal point)	$0.1-999.9 \mathrm{~m}$	100.0
P02	Passing speed between 2 points	Passing speed input between sensors (No decimal point)	$1-99999 \mathrm{~m} / \mathrm{sec}$	1000
P03	Value to be displayed	Value to actually be displayed on the panel (floating decimal point)	$1-99999 \mathrm{msec}$	100.0
P04	Auto zero time	Sets the time from when the input pulse is gone to when the display becomes "0".	$0.1-3600$ sec.	3600
P05	Input filter	Selects a minimum frequency that is larger than the maximum frequency of the input signal.	Input A $: 10 / 0.02 \mathrm{kHz}$ 10 kHz P06 Input B $: 10 / 0.02 \mathrm{kHz}$ l	10 kHz

- Auto zero time (Parameter setting P04)
- When Input A is not entered, the display for the passing speed between 2 points will not be updated.
- When the Input B value is not entered even after the auto zero time specified in P04 has elapsed, the display value for the passing speed between 2 points will be 0 .
※ When you set a smaller value than the input pulse cycle for Input A and Input B as auto zero time, normal measurement cannot be performed because the auto zero function operates with each pulse.

Input filter (Parameter setting P05, P06)

- The Input A filter can be set in P05.
- The Input B filter can be set in P06. When setting the filter, select a filter value that is larger than and closest to the frequency you want to input.
※ When the duty (proportion of ON time for one cycle) for the input signal is low, normal pulse reception may fail due to signal attenuation even if you have set the filter with a larger value than the input frequency. In such cases, set the filter with an even larger value.

13-4. Teaching function

(1) Teaching function

When the time lag between 2 points can be measured, use the teaching function to make the settings easier.
The teaching function can be used to automatically set the parameter values and display the desired values.

Display value calculation			Set the teaching function setting value F in the teaching function setting mode (refer to the next section)
Time between Input A and Input B when the teaching function is set		T (min)	
Teaching function setting value		F	
Parameter setting value	P01 Distance between sensor A and sensor $B(m)$	P01	Automatically set the P02 value based on the time T (sec) between Input A and Input B, and the P01 setting
	P02 Passing speed between 2 points $(\mathrm{m} / \mathrm{sec})$	$\mathrm{P} 02=\mathrm{P} 01 / \mathrm{T}$	
	P03 Value to be displayed	$\mathrm{P} 03=\mathrm{F}$	Automatically set the P03 value to the same value as the teaching function setting value F
Display	Passing speed	F	

- Teaching function range

The the passing speed between 2 points ($\mathrm{m} / \mathrm{sec}$) range where the teaching function can be performed is described below.When the the passing speed is beyond the input range, "EE-2" is displayed. (Refer to page 36「19. Error display」)

$$
\text { ※Passing speed between } 2 \text { points }(\mathrm{m} / \mathrm{sec})=\mathrm{P} 01 / \mathrm{T}
$$

1 < Passing speed between 2 points $(\mathrm{m} / \mathrm{sec})<99999$

Displays "EE-2" for a second, and then returns to the normal measurement display.
※ Since the P02 calculation values are maintained after truncating the values after the decimal point, the teaching function setting value for the input you have entered may not be displayed depending on the input value and/or the the teaching function setting value.
※ When starting the teaching function setting mode with OVER displayed, "99999" is displayed at first.
※ The teaching function setting value can be entered within the range between 0.0001 and 99999.
If you enter a value beyond the input range, and press SET key, the displayed value will blink for a second, and the display will return to the teaching function setting mode.

Teaching function setting mode
The selected digit blinks

SET Key

Saves the changed contents and displays the normal measurement

Press SHIFT and TEACH keys at the same time during normal measurement display, the main diplay blinks.
Press the keys for 5 seconds to move to teaching function setting mode.
TEA_LED lights up during teaching function setting mode.

- Use key to select the digit you want to change. Use $\mathbf{\Delta}$ key to change the value of the selected digit. Enter the value you want to display for the passing speed between 2 points.
- Select the decimal point to change the decimal point display digit using $\mathbf{\Delta}$ key.
- While in the teaching function setting mode, press SET key to save the changed contents and return to the normal measurement display.

15．Mode 16 Time lag mode

In mode 16 （time lag mode），the passing time between sensors on 2 points（ A and B ）is displayed．

Mode 16	Time lag mode

15－1．Content

Dispaly input time lag between input A and input B．

Display value calculation	
Time from the Input A rising edge to the Input B rising edge	$\mathrm{T}(\mathrm{sec})$.

15－2．Measured value display

The calculation result of the passing speed between 2 points is displayed as below．
－Hour：Minute：Second（P01 「0：00：00」setting）1／100 second display（P01「000：00」 settinng）

※ When the time width between A and B is 10 msec or less，the error display（EE－1）is indicated．
（Refer to page 36「19．Error display」）

In the parameter settings, the display mode, auto zero time, and input filter can be set.

(1) Parameters

The following parameters (P01-P04) can be set in mode 16.

\bullet Parameters in mode 16	Input range			
No.	Setting item	Description	Default value	
P01	Switch between HH:MM:SS and 1/100 seconds	Display mode selection	$0: 00: 00($ Hour:Minute:Second) $000: 00(1 / 100$ Second display system)	$1 / 100$ seconds display
P02	Auto zero time	Sets the time from when the input pulse is gone to when the display becomes "0".	$0.1 \sim 3600$ sec.	3600 sec.
P03	Input filter	Selects a minimum frequency that is larger than the maximum frequency of the input signal.	Input A : $10 / 0.02 \mathrm{kHz}$	10 kHz
P04		Input B : $10 / 0.02 \mathrm{kHz}$	10 kHz	

- Auto zero time (Parameter setting P02)
- When Input A is not entered, the display for the passing speed between 2 points will not be updated.
- When the Input B value is not entered even after the auto zero time specified in P04 has elapsed, the display value for the passing speed between 2 points will be 「 $\because \because \because$ 」 (OVER display).
※ When you set a smaller value than the input time lag of Input A and Input B as auto zero time, normal measurement cannot be performed because the auto zero function operates with each pulse.
- Input filter (Parameter setting P03, P04)
- The Input A filter can be set in P03.
- The Input B filter can be set in P04. When setting the filter, select a filter value that is larger than and closest to the input signal frequency you want to input. Set the input filter with a larger value than the input signal frequency.
※ When the duty (proportion of ON time for one cycle) for the input signal is low, normal pulse reception may fail due to signal attenuation even if you have set the filter with a larger value than the input frequency. In such cases, set the filter with an even larger value.

16. Mode 99 Test mode

Test mode is to make sure that the equipment is functioning properly.
Please follow the procedure bellow to check the operation of the equipment.

17．Parameter setting

17－1 Content

Each mode has different contents of parameter setting procedures．Set each parameter item according to the description and range in the table below．
－Parameters in mode 11，12， 13

No．		Setting item	Input range	Default value
P01	InputA	Pulse count per revolution	「＿＿0001」～「＿＿9999」 P／r	1P／r
P02		Setting revolution speed（detection section）	「＿00001」～「＿99999」	1000rpm
P03		Value to be displayed（with decimal point）	「＿0．0001」～「＿99999．」	1000
P04	$\begin{gathered} \text { Input } \\ \text { B } \end{gathered}$	Pulse count per revolution	「＿＿0001」～「＿＿9999」 P／r	$1 \mathrm{P} / \mathrm{r}$
P05		Setting revolution speed（detection section）	「＿00001」～「＿99999」	1000rpm
P06		Value to be displayed（with decimal point）	「＿0．0001」～「＿99999．」	1000
P07	Unit used for displayed value		Designate 「＿0＿」（ $\times 1$ ）／「＿1＿」 $(\%)$	0
P08	Decimal point location		「＿00000．」～「＿0．0000」	00000.
P09	Display cycle			1 sec ．
P10	Auto zero time		「＿＿000．1」～「＿＿150．0」 sec ．	6 sec ．
P11	Input filter		Input A ：「＿10＿」／「＿30＿」／「＿100＿」／Г＿0．02＿JkHz	10 kHz
P12			Input B ：「＿10＿」／「＿30＿」／Г＿100＿」／Г＿0．02＿JkHz	10 kHz

－Parameters in mode 14

P01	$\begin{gathered} \text { Input } \\ \text { A } \end{gathered}$	Pulse count per revolution	「＿＿0001」－「＿＿9999」 P／r	$1 \mathrm{P} / \mathrm{r}$
P02		Setting revolution speed（detection section）	「＿00001」－「＿99999」	1000rpm
P03		Value to be displayed（with decimal point）	「＿0．0001」－「＿99999．」	1000
P04	Input B	Pulse count per revolution	「＿＿0001」－「＿＿9999」 P／r	$1 \mathrm{P} / \mathrm{r}$
P05		Setting revolution speed（detection section）	「＿00001」－「＿99999」	1000rpm
P06		Value to be displayed（with decimal point）	「＿0．0001」－「＿99999．」	1000
P07	Decimal point location		「＿00000．」－「＿0．0000」	00000.
P08	Display cycle			1 sec ．
P09	Auto zero time		「＿＿000．1」～「＿＿150．0」 sec．	6 sec ．
P10	Input filter			10 kHz
P11			Input B ：「＿10＿」／Г＿30＿」／／＿100＿」／Г＿0．02＿JkHz	10 kHz

－Parameters in mode 15

P01	Distance between 2 points	「＿＿000．1」－「＿＿999．9」m（fixed decimal point）	100.0
P02	Passing speed between 2 points	「＿00001」－「＿99999」 m／sec	1000
P03	Value to be displayed	「＿0．0001」－「＿99999．」 msec	100.0
P04	Auto zero time	「＿0000．1」－「＿3600．0」 sec．	3600
P05	Input filter	Input A ：「＿10＿J／${ }^{\text {＿}}$ 0．02＿JkHz	10 kHz
P06		Input B ：「＿10＿J／${ }^{\text {a }}$－0．02＿JkHz	10 kHz

－Parameters in mode 16

P01	Switch between HH：MM：SS and 1／100 seconds	「＿0：00：00」（hour：minute：second display）／「＿000：00＿」（1／100 seconds display）	1／100 seconds display
P02	Auto zero time	「＿0000．1」－「＿3600．0」 sec．	3600 sec．
P03	Input filter		10 kHz
P04		Input B ：「＿10＿」／Г＿0．02＿」kHz	10 kHz

17－2 Operation

Please follow the procedure below to specify the parameter settings．
Note that the number of the parameter items and its contents depend on the mode．
In addition，when you change the mode，the specified parameter contents will be reset to the default values．

Normal measurement display

Parameter setting mode \ulcorner P01

Mode No．display Parameter No．
Mode $11 \rightarrow$ 「11」
－On the alternate display，press $\boldsymbol{\Delta}$ to move to 「P02」 alternate display．
Mode $12 \rightarrow$ 「12」
－On the alternate display，press ENT key to move to the「P01」 setting mode．You can change the setting contents in the setting mode．
Mode $13 \rightarrow$ 「13」
－On the alternate display，press SET key to save the changed contents， and return to the normal measurement display．

When the parameter setting mode starts，the alternate display for 「P01」 is performed．
$\lceil 1 \square-\mathrm{P} 01$ 」 and the current parameter P01 value are displayed alternately．
Press SHIFT and PARA keys at the same time during normal measurement display，the main diplay blinks．
Press the keys for 5 seconds to move to parameter setting mode．

Saves the changed contents and displays the normal measurement

For setting the	
numeric values	e Use to move to the desired digit，and use $\boldsymbol{\Delta}$ to set the value of the seled digit． The selected digit blinks． For parameters where the decimal point location can be set， use to select the decimal point，and use $\boldsymbol{\Delta}$ to change the decimal point display location．
For selecting the setting	\cdot Use $\boldsymbol{\Delta}$ to select the setting contents．

－While in the setting mode，press ENT key to move to 「P02」 alternate display．
－While in the setting mode，press SET key to save the changed contents and return to the normal measurement display．

Use the same operation as above to perform the parameter settings for P02 and later．

18．Function setting

18－1 Functions

The following functions can be set in each mode．
－Function in mode 11，12，13， 14

No．	Setting item	Description	Input range	Default value
F01	Hi limit	Sets the Hi limit value	「＿00000」－「＿99999」	0
F02	Lo limit value	Sets the Lo limit value	「＿00000」－「＿99999」	0
F03	Hi Hi limit value	Sets the Hi Hi limit values	「＿00000」－「＿99999」	0
F04	Lo Lo limit value	Sets the Lo Lo limit value	「＿00000」－「＿99999」	0
F05	Hysteresis of the Hi and Lo limit values	Sets the Hysteresis of the Hi and Lo limit values	「＿＿＿00」－「＿＿99」	0
F06	Judgment output timer at startup	Sets the time when the comparator judgment is output at startup	「＿＿＿00」－「＿＿＿99」 sec．	0 sec ．
F07	Minimum revolution speed	Sets the revolution speed to be displayed as zero	「＿00000」－「＿99999」	0
F08	Frequency of the moving average	Used when variation of the revolution speed is large and a stable display cannot be attained	$\begin{aligned} & \left.\left.\Gamma _0_{-}\right\rfloor(\text {none }) / \Gamma_{-} 1_{-}\right\rfloor(3) / \\ & \left.\Gamma_{-} 2_{-}\right\rfloor(10) \end{aligned}$	0
F09	Pre－arithmetic function	Promptly performs the deceleration display when the signal is lost	「＿0＿」（none）／「＿1＿」（equipped）	0
F10	BCD output logic	Sets 0 for the negative logic，and 1 for the positive logic（logic of the decimal point output）	$\begin{aligned} & \left.\Gamma \quad 0_{-}\right\rfloor \text {(negative logic) } \\ & \left./ \Gamma_{-} 1_{-}\right\rfloor \text {(positive logic) } \end{aligned}$	$\begin{gathered} 0 \\ \text { (negative logic) } \end{gathered}$
F11	Analog voltage output value	Sets the display value equivalent to the maximum value for each output（ $10 \mathrm{~V}, 5 \mathrm{~V}, 1 \mathrm{~V}, 20 \mathrm{~mA}$ ）	「＿00000」－「＿99999」	1000
F12	Analog voltage output minimum value	For the value less than this display value，each output will be forced to be the minimum value $(0 \mathrm{~V}$ ， $1 \mathrm{~V}, 4 \mathrm{~mA}$ ）	「＿00000」－「＿99999」	10
F13	Analog signal output cycle	Becomes the fastest speed（ 10 msec ＊）when this value is 0 ，and updates the analog signal output every display update cycle when it is 1 ※＊When the frequency is 200 Hz or more		$\begin{gathered} 0 \\ \text { (Maximum speed) } \end{gathered}$
F14	Analog signal output offset	Adds the value set in percentage to the maximum output $(10 \mathrm{~V}, 1 \mathrm{~V})$ regarded as 100% ，and outputs	「＿＿－100．0」－「＿＿100．0」\％	0\％

－Function in mode 15

No．	Setting item	Description	Input range	Default value
F01	Hi limit	Sets the Hi limit value	「＿00000」－「＿99999」	0
F02	Lo limit value	Sets the Lo limit value	「＿00000」－「＿99999」	0
F03	Hi Hi limit value	Sets the Hi Hi limit values	「＿00000」－「＿99999」	0
F04	Lo Lo limit value	Sets the Lo Lo limit value	「＿00000」－「＿99999」	0
F05	Hysteresis of the Hi and Lo limit values	Sets the Hysteresis of the Hi and Lo limit values	「＿＿＿00」－「＿＿＿99」	0
F06	Judgment output timer at startup	Sets the time when the comparator judgment is output at startup	「＿＿＿00」－「＿＿99」 sec ．	0 sec ．
F10	BCD output logic	Sets 0 for the negative logic，and 1 for the positive logic（logic of the decimal point output）		O（negative logic）
F11	Analog voltage output value	Sets the display value equivalent to the maximum value for each output（ $10 \mathrm{~V}, 5 \mathrm{~V}, 1 \mathrm{~V}, 20 \mathrm{~mA}$ ）	「＿00000」～「＿99999」	1000
F12	Analog voltage output minimum value	For the value less than this display value，each output will be forced to be the minimum value（ 0 V ， $1 \mathrm{~V}, 4 \mathrm{~mA}$ ）	「＿00000」～「＿99999」	10
F13	Analog signal output cycle	Becomes the fastest speed（ 10 msec ＊）when this value is 0 ，and updates the analog signal output every display update cycle when it is 1 ※＊When the frequency is 200 Hz or more	「＿0＿」（Maximum speed ）／ 「＿1＿」（In synch with display renewal）	$\begin{gathered} 0 \\ \text { (Maximum speed) } \end{gathered}$
F14	Analog signal output offset	Adds the value set in percentage to the maximum output $(10 \mathrm{~V}, 1 \mathrm{~V})$ regarded as 100% ，and outputs	「＿－100．0」～「＿＿100．0」\％	0\％

－Function in mode 16

No．	Setting item	Description		Input range	Default value
F01	Hi limit	Sets the Hi limit value	Hour：Minute：Second	0：00：00－059：59	Second display system 0：00
			Second display system	0：00－999：99	
F02	Lo limit value	Sets the Lo limit value	Hour：Minute：Second	0：00：00－0：59：59	Second display system0:00
			Second display system	0：00－999：99	
F03	Hi Hi limit value	Sets the Hi Hi limit values	Hour：Minute：Second	0：00：00－0：59：59	Second display system$0: 00$
			Second display system	0：00－999：99	
F04	Lo Lo limit value	Sets the Lo Lo limit value	Hour：Minute：Second	0：00：00－0：59：59	Second display system 0：00
			Second display system	0：00－999：99	
F05	Hysteresis of the Hi and Lo limit values	Sets the Hysteresis of the Hi and Lo limit values	0－99		0
F06	Judgment output timer at startup	Sets the time when the comparator judgment is output at startup	0－99 sec．		0 sec ．
F10	BCD output logic	Sets 0 for the negative logic，and 1 for the positive logic（logic of the decimal point output）	「＿0＿」（negative logic） 「＿1＿」（positive logic）		$\begin{gathered} 0 \\ \text { (negative logic) } \end{gathered}$
F11	Analog voltage output value	Sets the display value equivalent to the maximum value for each output（ 10 V ， $5 \mathrm{~V}, 1 \mathrm{~V}, 20 \mathrm{~mA})$	Hour：Minute：Second	［＿0：00：00」－「＿0：59：59］	Second display system10：00
			Second display system	「＿000：00」－「＿999：99」	
F12	Analog voltage output minimum value	For the value less than this display value，each output will be forced to be the minimum value（ $0 \mathrm{~V}, 1 \mathrm{~V}, 4 \mathrm{~mA}$ ）	Hour：Minute：Second	「＿0：00：00」－「＿0：59：59］	Second display system 10：00
			Second display system	「＿000：00」－「＿999：99」	
F13	Analog signal output cycle	Becomes the fastest speed（ 10 msec ＊） when this value is 0 ，and updates the analog signal output every display update cycle when it is 1 ※＊When the frequency is 200 Hz or more	$\left\lvert\, \begin{aligned} & \Gamma \quad 0_{-} 」(\text { Maximum spe } \\ & \Gamma \\ & l_{-} \\ & 1_{-} \end{aligned}\right. \text {(In synch with }$	ed ）／ display renewal）	0 （Maximum speed）
F14	Analog signal output offset	Adds the value set in percentage to the maximum output（ $10 \mathrm{~V}, 1 \mathrm{~V}$ ）regarded as 100% ，and outputs	「＿＿－100．0」～「＿＿100．0」		0\％

※ F10 is only displayed when the BCD option is attached．
※ F11～ 14 are only displayed when the FVC option is attached．
(1) Comparator function (Hi Lo limit/Hi Hi Lo Lo limit judgment, Hysteresis) (F01~F05)

- Hi Lo limit/Hi Hi Lo Lo limit judgment can be performed by setting function items F01-F04.
- Comparator function display

- Content
- Judgment conditions

Lo limit value \leqq displayed value \leqq Hi limit value and Lo Lo limit value \leqq displayed value \leqq Hi Hi limit value	
When either the Hi Lo limit judgment or Hi Hi Lo Lo limit judgment is invalid, and the other is within the setting range	GO judgment
displayed value > Hi Hi limit value	HH judgment
displayed value > Hi limit value	H judgment
displayed value < Lo Lo limit value	LL judgment
displayed value < Lo limit value	L judgment

- Judgment is performed in all measurement modes.
- The absolute measurement value is judged. None of the measurement values for Input A and Input B can be judged.
- The Hi Hi Lo Lo limit values and Hi Lo limit values are judged separately.
- When both the Hi Hi Lo Lo limit values are " 0 ", the Hi Hi Lo Lo limit judgment is not performed.
- When both the Hi Lo limit values are " 0 ", the Hi Lo limit judgment is not performed
- When both the Hi Hi Lo Lo limit values and Hi Lo limit values are " 0 ", no judgment is performed.

Hysteresis

When hysteresis is set in function item F05, hysteresis is provided between judgment ON and OFF.
The hysteresis setting value is common to Hi limit, Hi Hi limit, Lo limit, and Lo Lo limit judgments.

- Hi limit and Hi Hi limit judgment conditions

Judgment OFF \rightarrow ON	Measured value $>$ Judgment value
Judgment ON \rightarrow OFF	Measured value \leqq Judgment value-Hysteresis

- Lo limit and Lo Lo limit judgment conditions

| Judgment OFF \rightarrow ON | Measured value < Judgment value |
| :---: | :--- | :--- | :--- | :--- |

| Judgment ON \rightarrow OFF | Measured value \geqq Judgment value + Hysteresis |
| :--- | :--- | :--- |

(2) Judgment output timer at startup (F06)

The judgment output timer function can be used by setting the value to 0 or more in function item F06. After the power is turned on, judgment starts when the judgment output timer setting time has elapsed since the time measurement starts.

(3) Minimum rotation speed (F07)

The following functions can be used by setting the value to 0 or more in function item F07.

- In modes 11, 12, 13, and 14, when the measurement revolution speed for Input A or Input B becomes the minimum revolution speed or less, the measurement value for Input A or Input B is specified as "0".

Input A : (Input signal frequency for Input A/Parameter item P01 setting value) x $60<$ Minimum revolution speed $->$ Input A measurement value $=" 0 "$ Input B : (Input signal frequency for Input B/Parameter item P04 setting value) x $60<$ Minimum revolution speed $->$ Input B measurement value $=" 0 "$

※ The input value of the minimum revolution speed becomes the lower two digits of the display value regardless of the decimal point location.
（4）Moving average calculation sample size（F08）
The moving average function can be used by setting a value other than＂ 0 ＂in function item＂F08 Frequency of the moving average＂．
The measurement value every display cycle to be averaged using the moving average frequency is displayed．
－Without using the moving average（when the F08 setting value is＂ 0 ＂）
When hysteresis is set in function item F05，hysteresis is provided between judgment ON and OFF．
The hysteresis setting value is common to Hi limit，Hi Hi limit，Lo limit，and Lo Lo limit judgments．

measured value（1）	measured value（2）	measured value（3）	measured value（4）	measured value（5）
\downarrow \downarrow \downarrow \downarrow \downarrow display update measured value（1） display update measured value（2）\quaddisplay update measured value（3）\quaddisplay update measured value（4）\quaddisplay update measured value（5）				

※ The measurement values（1）－（5）show the average measurement value every display update cycle．
－With using the moving average（when the F08 setting value is＂ 1 ＂and＂2＂）
The measurement value of every display cycle to be averaged using the moving average frequency is displayed．
The figure below shows the relationship between the display update and averaging when the F08 setting value is＂ 0 ＂（at a moving average of 3 times）．

※ For mode 11－14，obtain the moving average for Input A and Input B respectively，and calculate the display value from their results．
（5）Forecasting calculation（F09）
The forecasting calculation function can be used by setting a value of＂1＂in function item＂F09 Forecasting calculation＂．
When the input signal is no longer entered，reduced speed display is performed immediately．

※ For mode 11－14，obtain the forecasting calculation for Input A and Input B respectively，and calculate the display value from their results．
（6） BCD output logic（F10）
When the BCD output option is not attached，the function items are not displayed． ※ Refer to p． 37 「20．FVC function」 for the details．
（7）Analog output setting（F11～14）
When the analog output option is not attached，the function items are not displayed．
Refer to p．39「21．BCD option」for the details．

18－3 Operation

Please follow the procedure below to specify the function settings．
In addition，when you change the mode，the specified function contents will be reset to the default values．

Measured value

Press SHIFT and FUNC keys at the same time during normal measurement display，the main diplay blinks．
Press the keys for 5 seconds to move to function setting mode．

Function setting mode「F01」

Mode No．
Function No．
Mode $11 \rightarrow$ 「11」
Mode $12 \rightarrow\lceil 12 」$
Mode $13 \rightarrow\lceil 13 」$
Mode $14 \rightarrow$ 「14」
When the parameter setting mode starts，the alternate display for 「F01」 is performed．
＂「1 \square－F01」＂and the current display value for Input A are displayed alternately．

－On the alternate display，press $\boldsymbol{\Delta}$ to move to 「F02」alternate display．
－On the alternate display，press ENT key to move to the「F01」 setting mode．You can change the setting contents in the setting mode．
－On the alternate display，press SET key to save the changed contents，and return to the normal measurement display．

Setting mode

Saves the changed contents and displays the normal measurement

Use and Δ to change the setting value and selection item．

For setting the numeric values	－Use to move to the desired digit，and use $\boldsymbol{\Delta}$ to set the value of the selected digit． The selected digit blinks． For functions where the decimal point location can be set， use to select the decimal point，and use $\boldsymbol{\Delta}$ to change the decimal point display location．
For selecting the setting	－Use $\boldsymbol{\Delta}$ to select the setting contents．
－While in the setting mode，press ENT key to move to the「F02」alternate display．	
－While in the setting mode，press SET key to save the changed contents and return to	
the normal measurement display．	

Use the same operation as above to perform the parameter settings for P02 and later．

19. Error display

Abnormal events are alerted by displaying error codes.
Please take proper action according to the table below.

※ When the FVC option and BCD option are attached, each output when error code 2 or 3 is displayed maintains the state just before the error occurs.

20. FVC Option

When the FVC option is attached, the analog signal output (voltage/current) for the display value can be performed.

20-1. FVC option specifications

- Specifications

Model	-FVC		
Output	Current output	$4 \sim 20 \mathrm{~mA}$	Select one of these three output
	Voltage output	$0 \sim 10 \mathrm{~V}$ If negative value is displayed, the output is $\pm 10 \mathrm{~V}$	
		$1 \sim 5 \mathrm{~V}$	
		$0 \sim 1 \mathrm{~V}$ If negative value is displayed, the output is $\pm 1 \mathrm{~V}$	
Load Connector specifications	Current output	below 500ohm	
	Voltage output	above 1Kohm	
	$\begin{aligned} & \text { Main body: PCS-E36LMD } \\ & \text { Attachment: Plug PCS-E36SF, Cover PCS-E36LA } \\ & \text { (Both manufactured by HONDA TSUSHIN KOGYO CO., LTD.) } \end{aligned}$		

* Cables are to be connected by users.
- Connection (connector plugging)

Code	Pin number		Code
$\begin{gathered} \mathrm{C}+ \\ 4 \sim \\ 20 \mathrm{~mA}+ \end{gathered}$	1	19	$\begin{gathered} \mathrm{C}^{-} \\ \sim 20 \mathrm{~mA} \end{gathered}$
	2	20	
NC	3	21	NC
NC	4	22	NC
NC	5	23	NC
NC	6	24	NC
NC	7	25	NC
NC	8	26	NC
$\begin{gathered} \mathrm{V} 10+ \\ \sim \\ \sim \end{gathered}$	9	27	$\begin{gathered} \text { V10- } \\ 0 \sim 10 \mathrm{~V}- \end{gathered}$
	10	28	
NC	11	29	NC
NC	12	30	NC
$\begin{gathered} \mathrm{V} 5+ \\ \sim \\ \sim \end{gathered}$	13	31	$\begin{gathered} \mathrm{V}_{5}^{-} \\ 1 \sim 5 \mathrm{~V}- \end{gathered}$
	14	32	
NC	15	33	NC
NC	16	34	NC
$\begin{gathered} \mathrm{V} 1+ \\ 0 \\ 1 \mathrm{~V}+ \\ \hline \end{gathered}$	17	35	$\stackrel{\mathrm{V} 1^{-}}{\sim}{ }_{1 \mathrm{~V}}$
	18	36	

Connector numbering
(as the plug is viewed from wire connection side)

- The connector next to " 1 "marking is \#2 terminal.

Suggested wiring order is $1,3,5 \sim 20,22,24 \sim$ for the ease of finding the right numbering.

- The space between terminals is small. Be cautious about the shortcircuit while soldering.

20-2. FVC option setting

When the FVC option is attached, the following settings can be specified in the function settings (refer to page 30 "18. Setting the function").

No.	Setting item	Description
F11	Maximum analog signal displayed value	Sets the display value equivalent to the maximum value for each output (10V, $5 \mathrm{~V}, 1 \mathrm{~V}, 20 \mathrm{~mA})$
F12	Minimum analog signal displayed value	For the value less than this display value, each output will be forced to be the minimum value (0V, $1 \mathrm{~V}, 4 \mathrm{~mA})$
F13	Analog signal output cycle	Becomes the fastest speed (10msec*) when this value is 0, and updates the analog signal output every display update cycle when it is 1 $※$ *When the frequency is 200 Hz or more
F14	Analog signal output offset	Adds the value set in percentage to the maximum output (10V, 1V) regarded as 100\%, and outputs

When offset is OFF (off set F14 = 0)

When offset is ON (off set F14 > 0)

Condition	Analog output value
displayed value $>$ F11	Maximum value (10V, 5V, 1V, 20mA)
F12 $>$ displayed value $>-$ F12	(MAX/F11) \times Measured value for analog output + (F14 $\%$ (\%) of MAX output)
F12 $>$ displayed value $>-$ F12	Minimum value (0V, 1V, 4mA) + (F14(\%) of MAX output)
- F12 \geqq displayed value $\geqq-$ F11	(MAX/F11) \times Measured value for analog output + (F14(\%) of MAX output)
- F11 $>$ displayed value	-Maximum value (-10V, -1V)

※ F11' is the display value when the output value to which F14(\%) of MAX output is added becomes the MAX value or larger

Example) For 10 V output, setting $\mathrm{F} 11=100$ and $\mathrm{F} 14=10(\%)$ results in $\mathrm{F} 11^{\prime}=90$, which means 10 V is output when the display value is 90 .

When offset is ON (off set F14<0)

※ F11' is the display value when the output value to which F14(\%) of MAX output is added becomes the MAX value or larger
Example) For 10 V output, setting F11=100 and F14=-10(\%) results in $\mathrm{F} 11^{\prime}=110$, which means 10 V is output when the display value is 90 .
※ For voltage output of $1 \mathrm{~V} \sim 5 \mathrm{~V}, 1 \mathrm{~V}$ or less cannot be output. For current output of $4 \sim 20 \mathrm{~mA}, 4 \mathrm{~mA}$ or less cannot be output.

21. BCD Option

21-1. BCD Option Specifications

- Specifications	
Model	-BCD
NPN open collector output	$\begin{array}{c\|c} \text { Output } \\ \text { capacity } \end{array} \text { DC30V } 20 \mathrm{~mA}$
Open collector input	Input for open collector (NPN)
	LO input Load capacity above 5mA
	LO input $0 \sim 1.5 \mathrm{~V}$
	HI input Leakage current below 0.1 mA
Data output	6 digits BCD code
Decimal point output	DP1 $\sim 4\left(10^{-1} \sim 10^{-4}\right.$ digits)
Control output	PLUS \quad When data output is positive, this signal is LO.
	DT OUT When this signal is HI, output signal is fixed.
	OVR When the display value overflows, this signal is LO.
Control input	HOLD While this signal is LO, data is not renewed.
	ENABLE While this signal is LO, all outputs provide high impedance.
Connector specifications	Main body: PCS-E36LMD Attachment: Plug PCS-E36FS, Cover PCS-E36LA (Both manufactured by HONDA TSUSHIN KOGYO CO., LTD.)
For BCD output and decimal point output, the positive and negative logic can be set (select in function 10)	
* Cables are to be connected by users. Connector numbering (as the plug is viewed from wire connection side)	
- The connector next to "1"marking is \#2 terminal. - Suggested wiring order is 1,2, $5 \sim 20, ~ 22, ~ 24 \sim$ for the ease of finding the right numbering. The space between terminals is small. Be cautious about the short-circuit while soldering.	

HOLD input circuit

- Connection (connector plugging)

Input/output	Code		Pin number		Code		Input/output
Output	$\times 10^{0}$	1	1	19	1	$\times 10^{3}$	Output
		2	2	20	2		
		4	3	21	4		
		8	4	22	8		
	$\times 10^{1}$	1	5	23	1	$\times 10^{4}$	
		2	6	24	2		
		4	7	25	4		
		8	8	26	8		
	$\times 10^{2}$	1	9	27	1	$\times 10^{5}$	
		2	10	28	2		
		4	11	29	4		
		8	12	30	8		
			13	31		DP1	
	DT		14	32		DP2	
			15	33		DP3	
Input	HOLD		16	34		DP4	
	ENABLE		17	35		GND	
-	GND		18	36		GND	

Output circuit

ENABLE input circuit

- Timing chart

When the BCD option is attached, the following settings can be specified in the function settings (refer to "18. Setting the function" on page 30).

No.	Setting item	Description	Input range	Default value
F10	BCD output logic	Sets 0 for the negative logic, and 1 for the positive logic $※$	0 (negative logic)/1(positive logic)	negative logic

※ For F10, only the positive and negative logic of BCD output, decimal point output, PLUS, and OVER can be set.

Displayed value

Hour : Minute : Second
SIG LL L H HH MAX MIIN TEA

Displayed in Seconds

SIG LL L H HH MAX MIN TEA

Display OVER output

BCD Output

000123
-000123

For Hour:Minute:Second display, ":" is displayed as ".".

For Seconds display, ":" is displayed as ".".

For OVER display, "999999" is displayed

TSURIUGA TSURUGA ELECTRIC CORPORATION

1-3-23 Minami Sumiyoshi, Sumiyoshi, Osaka, Japan 558-0041
Phone: +81-(0)6-6692-7001 Fax: +81-(0)6-6692-7004
Copyright © TSURUGA ELECTRIC CORPORATION. ALL RIGHTS RESERVED.

[^0]: ## Precautions before use

 ## Power

 - Be sure to use the unit under the specified voltage (AC power specifications: 85-264VAC / DC power specifications: 10.8-25.2VDC).
 - Inverter power source cannot be used.

 ## Input signal wire

 - Connection wiring from sensors shall not be kept in the same or parallel conduit or cable as the power source, power or high voltage cables. If you fail to separate the wiring, noise may be superimposed on the signal wire, resulting in malfunctions.
 -Use shielded wire for input power connections with the shortest possible metal conduit.

 ## Terminal

 \bullet Check that the screws have not come loose due to vibrations after a certain period of time.

 ## Operating environment

 \bullet Do not install the unit in the following places or conditions.

 - Places exposed to direct sunlight, or places where the ambient temperature exceeds a range of $0-45^{\circ} \mathrm{C}$.
 - Places where the relative humidity percentage exceeds a range of $35-85 \%$, or places subject to condensation
 due to rapid change in humidity.
 - Places subject to corrosive and/or combustible gases.
 - Places subject to a large amount of dust, salinity, and/or ferric substance.
 - Places susceptible to noise (including static electricity).

